Svar:
7.7782 enheter
Forklaring:
Siden dette er en
1. Dette er en riktig trekant
2. Dette er en ensidig trekant
En av teorimene om geometri, Isosceles Right Triangle Theorem, sier at hypotenusen er
Vi vet allerede hvor lenge hypotenusen er
Svar:
Hvert ben er
Forklaring:
Å vite at to vinkler er lik
La lengden på de to like sidene være
Ved hjelp av Pythagoras teorem kan vi skrive en ligning:
Men siden sider ikke kan ha en negativ lengde, avvis det negative alternativet.
Hypotenusens lengde i en høyre trekant er 20 centimeter. Hvis lengden på ett ben er 16 centimeter, hva er lengden på det andre benet?
"12 cm" Fra "Pythagoras Theorem" "h" ^ 2 = "a" ^ 2 + "b" ^ 2 hvor "h =" Lengden på hypotenussiden "a =" Lengden på ett ben "b =" Lengden på en annen ben ("20 cm") ^ 2 = ("16 cm") ^ 2 + "b" ^ 2 "b" ^ 2 = ("20 cm") ^ 2 (16 cm ") ^ 2" b " = sqrt ("20 cm") ^ 2 ("16 cm") ^ 2) "b" = sqrt ("400 cm" ^ 2 - "256 cm" ^ 2) "b" = sqrt "^ 2)" b = 12 cm "
Ett ben av en riktig trekant er 96 tommer. Hvordan finner du hypotenus og det andre benet hvis hypotenusens lengde overstiger 2,5 ganger det andre benet med 4 tommer?
Bruk Pythagoras til å etablere x = 40 og h = 104 La x være det andre benet, så hypotenuse h = 5 / 2x +4 Og vi får beskjed om det første benet y = 96 Vi kan bruke Pythagoras ekvation x ^ 2 + y ^ 2 = 2x2 + 4x + 2x + 4 ^ 2x ^ 2 + 9216 = 25x ^ 2/4 + 20x +16 Reordering gir oss x ^ 2 - 25x ^ 2/4 - 20x +9200 = 0 Multiplikeres gjennom -4 21x ^ 2 + 80x -36800 = 0 Ved å bruke den kvadratiske formelen x = (-b + -sqrt (b ^ 2- 4ac)) / (2a) x = (- (80) + - sqrt (6400 + 3091200)) / (- 42) x = (-80 + -1760) / 42 så x = 40 eller x = -1840/42 Vi kan ignorere det negative svaret da vi reagerer på en ek
Ett ben av en riktig trekant er 96 tommer. Hvordan finner du hypotenus og det andre benet hvis hypotenusens lengde overstiger 2 ganger det andre benet med 4 tommer?
Hypotenuse 180,5, ben 96 og 88,25 ca. La det kjente benet være c_0, hypotenuseen er h, overskudddet av h over 2c som delta og det ukjente benet, c. Vi vet at c ^ 2 + c_0 ^ 2 = h ^ 2 (Pytagoras) også h-2c = delta. Subtituting i henhold til h får vi: c ^ 2 + c_0 ^ 2 = (2c + delta) ^ 2. Forenkling, c ^ 2 + 4delta c + delta ^ 2-c_0 ^ 2 = 0. Løsning for c får vi. c = (4delta ^ 2-4 (delta ^ 2-c_0 ^ 2)) / 2 Kun positive løsninger er tillatt c = (2sqrt (4delta ^ 2-delta ^ 2 + c_0 ^ 2) -4delta ) / 2 = sqrt (3delta ^ 2 + c_0 ^ 2) -2delta