Svar:
Lengde og bredde er henholdsvis 20 og 17 tommer.
Forklaring:
Først av alt, la oss vurdere
Nå vet vi at rektangelet er gitt av:
og det er lik:
Så vi får den kvadratiske ligningen:
La oss løse det:
hvor
Vi får to løsninger:
Som vi snakker om inches, må vi ta den positive.
Så:
# "Lengde" = x = 20 "tommer" # # "Bredde" = y = x-3 = 17 "tommer" #
Lengden på et rektangel er 3,5 tommer mer enn bredden. Omkretsen av rektangelet er 31 tommer. Hvordan finner du lengden og bredden på rektangelet?
Lengde = 9,5 ", Bredde = 6" Begynn med perimeterligningen: P = 2l + 2w. Fyll deretter inn informasjonen vi kjenner. Perimeteren er 31 "og lengden er lik bredden + 3,5". Derfor: 31 = 2 (w + 3,5) + 2w fordi l = w + 3,5. Da løser vi for w ved å dele alt med 2. Vi blir da igjen med 15,5 = w + 3,5 + w. Deretter trekker du 3,5 og kombinerer w's for å få: 12 = 2w. Endelig divider med 2 igjen for å finne w og vi får 6 = w. Dette forteller oss at bredden er lik 6 tommer, halvparten av problemet. For å finne lengden kobler vi bare den nye funnet breddeinformasjonen til v
Lengden på et rektangel er 3 ganger bredden. Hvis lengden ble økt med 2 tommer og bredden med 1 tommer, ville den nye omkretsen være 62 tommer. Hva er bredden og lengden på rektangelet?
Lengden er 21 og bredden er 7 Jeg bruker l for lengde og w for bredde Først er det gitt at l = 3w Ny lengde og bredde er henholdsvis l + 2 og w + 1 Også ny omkrets er 62 Så, l + 2 + l + 2 + w + 1 + w + 1 = 62 eller 2l + 2w = 56 l + w = 28 Nå har vi to relasjoner mellom l og w Erstatter første verdi av l i den andre ligningen vi får, 3w + w = 28 4w = 28 w = 7 Setter denne verdien av w i en av ligningene, l = 3 * 7 l = 21 Så lengden er 21 og bredden er 7
Lengden på et rektangel er 4 tommer mer enn bredden. Hvis 2 tommer tas fra lengden og legges til bredden, og figuren blir en firkant med et areal på 361 kvadrattommer. Hva er dimensjonene til den opprinnelige figuren?
Jeg fant en lengde på 25 "i" og bredde på 21 "i". Jeg prøvde dette: