Hva er grensen til x hvis (2x-1) / (x + 5)> = (x + 2) / (x + 3)?

Hva er grensen til x hvis (2x-1) / (x + 5)> = (x + 2) / (x + 3)?
Anonim

Svar:

#x = -5, x = -3, x = 1-sqrt (14), x = 1 + sqrt (14) #

#> = "oppstår for" x <-5 "og" x> = 1 + sqrt (14) "og" #

# -3 <x <= 1-sqrt (14) "." #

Forklaring:

# => (2x-1) / (x + 5) - (x + 2) / (x + 3)> = 0 #

(X + 5) (x + 5)) / ((x + 5) (x + 3))> = 0 #

# => (2x ^ 2 + 5x-3-x ^ 2-7x-10) / ((x + 5) (x + 3))> = 0 #

# => (x ^ 2 -2x-13) / ((x + 5) (x + 3))> = 0 #

# => (x - 1 - sqrt (14)) (x - 1 + sqrt (14))) / ((x + 5) (x + 3))> = 0 #

# "Vi har følgende nuller i størrelsesorden:" #

# …. -5 …. -3 …. 1-sqrt (14) …. 1 + sqrt (14) ….. #

#-----------0+++#

#-------0+++++++#

#-----0+++++++++#

#--0++++++++++++#

#'========================='#

#++0---0++0---0+++#

# "Vi ser"> = 0 "oppstår for" x <-5 "og" x> = 1 + sqrt (14) "og" # "

# -3 <x <= 1-sqrt (14) "." #