Hva er ligningen til linjen som er tangent til f (x) = x ^ 2 + sin ^ 2x ved x = pi?

Hva er ligningen til linjen som er tangent til f (x) = x ^ 2 + sin ^ 2x ved x = pi?
Anonim

Svar:

Finn derivatet og bruk definisjonen av skråningen.

Ligningen er:

# Y = 2πx-π ^ 2 #

Forklaring:

#f (x) = x ^ 2 + sin ^ 2 x #

#f '(x) = 2x + 2sinx (sinx)' #

#f '(x) = 2x + 2sinxcosx #

Hellingen er lik derivatet:

#f '(x_0) = (y-f (x_0)) / (x-x_0) #

Til # X_0 = π #

#f '(π) = (y-f (π)) / (x-π) #

For å finne disse verdiene:

#f (π) = π ^ 2 + sin ^ 2π #

#f (π) = π ^ 2 + 0 ^ 2 #

#f (π) = π ^ 2 #

#f '(π) = 2 * π + 2sinπcosπ #

#f '(π) = 2 * π + 2 * 0 * (- 1) #

#f '(π) = 2π #

Endelig:

#f '(π) = (y-f (π)) / (x-π) #

# 2π = (y-π ^ 2) / (x-π) #

# 2π (x-π) = y-π ^ 2 #

# Y = 2πx-2π ^ 2 + π ^ 2 #

# Y = 2πx-π ^ 2 #