Svar:
Ja, sirklene overlapper.
Forklaring:
beregne senteret til sentrumsavvik
La
Beregn summen av radien
sirklene overlapper
Gud velsigne …. Jeg håper forklaringen er nyttig.
Sirkel A har et senter ved (-9, -1) og en radius på 3. Sirkel B har et senter ved (-8, 3) og en radius på 1. Overlapper sirklene? Hvis ikke, hva er den minste avstanden mellom dem?
Sirklene overlapper ikke. Minste avstand mellom dem = sqrt17-4 = 0.1231 Fra de oppgitte dataene: Sirkel A har et senter ved (-9, -1) og en radius på 3. Sirkel B har et senter ved (-8,3) og en radius på 1. Overlapper sirklene? Hvis ikke, hva er den minste avstanden mellom dem? Løsning: Beregn avstanden fra sirkel A til senter av sirkel B. d = sqrt ((x_a-x_b) ^ 2 + (y_a-y_b) ^ 2) d = sqrt ((- 9--8) ^ 2 + (-1-3) ^ 2) d = sqrt ((- 1) ^ 2 + (- 4) ^ 2) d = sqrt (1 + 16) d = sqrt17 d = 4.1231 Beregn summen av radiusene: S = r_a + r_b = 3 + 1 = 4 Minste avstand mellom dem = sqrt17-4 = 0.1231 Gud velsigne .... Jeg h&
Sirkel A har et senter ved (3, 2) og en radius på 6. Sirkel B har et senter ved (-2, 1) og en radius på 3. Overlapper sirklene? Hvis ikke, hva er den minste avstanden mellom dem?
Avstanden d (A, B) og radiusen til hver sirkel r_A og r_B må tilfredsstille tilstanden: d (A, B) <= r_A + r_B I dette tilfellet gjør de slik at sirklene overlapper. Hvis de to sirkler overlapper, betyr det at minst avstand d (A, B) mellom senterene deres må være mindre enn summen av deres radius, slik det kan forstås fra bildet: (tall i bildet er tilfeldig fra internett) Så å overlappe minst en gang: d (A, B) <= r_A + r_B Den euklidiske avstanden d (A, B) kan beregnes: d (A, B) = sqrt ((Δx) ^ 2 + (Δy) ^ 2) Derfor: d (A, B) <= r_A + r_B sqrt ((Δx) ^ 2 + (Δy) ^ 2) <= r_A + r_B s
Sirkel A har et senter ved (2, 8) og en radius på 4. Sirkel B har et senter ved (-3, 3) og en radius på 3. Overlapper sirklene? Hvis ikke, hva er den minste avstanden mellom dem?
Sirkler overlapper ikke. Minste avstand d_b = 5sqrt2-7 = 0.071067 "" enhet Beregn avstanden d mellom sentre ved hjelp av avstandsformel d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ^ 2) d = sqrt ((2--3 ) ^ 2 + (8-3) ^ 2) d = 5sqrt2 Legg målingene til radien r_t = r_1 + r_2 = 4 + 3 = 7 Avstand d_b mellom sirkler d_b = d-r_t = 5sqrt2-7 = 0,071067 "" Gud velsigne ... Jeg håper forklaringen er nyttig.