Svar:
Forklaring:
Tegne et bilde. Basen med lengde
Dette betyr at vi har en riktig trekant med ben på
Vi kan bruke Pythagorasetningen til å bestemme at den manglende siden er
For å finne omkretsen av trekanten legger vi til sidelengder.
Basen av en trekant er 4 cm større enn høyden. Området er 30 cm ^ 2. Hvordan finner du høyden og lengden på basen?
Høyde er 6 cm. og basen er 10 cm. Areal av en trekant hvis bunn er b og høyden er h er 1 / 2xxbxxh. La høyden av gitt trekant være h cm, og som en trekants base er 4 cm større enn høyden, er basen (h + 4). Derfor er området 1 / 2xxhxx (h + 4) og dette er 30 cm ^ 2. Så 1 / 2xxhxx (h + 4) = 30 eller h ^ 2 + 4h = 60 ie h ^ 2 + 4h-60 = 0 eller h ^ 2 + 10h-6h-60 = 0 eller h (h + 10) -6 (h + 10) = 0 eller (h-6) (h + 10) = 0: .h = 6 eller h = -10 - men trekantens høyde kan ikke være negativ. Høyden er 6 cm. og basen er 6 + 4 = 10 cm.
Basen av en trekant av et gitt område varierer omvendt som høyden. En trekant har en base på 18cm og en høyde på 10cm. Hvordan finner du høyden på en trekant med like område og med en base på 15cm?
Høyde = 12 cm Arealet av en trekant kan bestemmes med ligningsområdet = 1/2 * base * høyde Finn området for den første trekant ved å erstatte målingene av trekanten i ligningen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 La høyden av den andre triangelen = x. Så området ligningen for den andre trekanten = 1/2 * 15 * x Siden områdene er like, 90 = 1/2 * 15 * x ganger begge sider ved 2. 180 = 15x x = 12
Hva er hastigheten for endring av bredden (i ft / sek) når høyden er 10 fot, hvis høyden er avtagende i det øyeblikket med en hastighet på 1 fot / sek. Et rektangel har både en skiftende høyde og en skiftende bredde , men høyden og bredden endrer seg slik at rektangelområdet alltid er 60 kvadratmeter?
Forandringshastigheten for bredden med tiden (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / ) = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / (()) dh) = - (60) / (h2 2) Så (dW) / (dt) = - (- (60) / (h2 2)) = (60) / (h ^ 2) Så når h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"