Her, som blokkenes tendens er å bevege seg oppover, vil friksjonskraften derfor virke sammen med komponenten av sin vekt langs flyet for å senke bevegelsen.
Så, nettkraft som virker nedover langs flyet er
Så, vil netto retardasjon være
Så, hvis det beveger seg oppover langs flyet ved
Så,
Svar:
Avstanden er
Forklaring:
Løsning i retning opp og parallelt med flyet som positivt
Kinetisk friksjonskoeffisient er
Da er netto kraft på objektet
Ifølge Newtons andre lov om bevegelse
Hvor
Så
Kinetisk friksjonskoeffisient er
Akselerasjonen på grunn av tyngdekraft er
Hellingen til rampen er
Akselerasjonen er
Det negative tegnet indikerer en retardasjon
Bruk bevegelsesligningen
Den innledende hastigheten er
Den endelige hastigheten er
Akselerasjonen er
Avstanden er
Hva er dimensjonene til en boks som vil bruke minimumsmaterialet, hvis firmaet trenger en lukket boks hvor bunnen er i form av et rektangel, hvor lengden er dobbelt så lang som bredden og boksen må holde 9000 kubikkmeter materiale?
La oss begynne med å sette inn noen definisjoner. Hvis vi kaller h boksenes høyde og x de mindre sidene (slik at de større sidene er 2x, kan vi si at volumet V = 2x * x * h = 2x ^ 2 * h = 9000 hvorfra vi trekker ut hh = 9000 / (2x ^ 2) = 4500 / x ^ 2 Nå for overflatene (= materiale) Topp og bunn: 2x * x ganger 2-> Areal = 4x ^ 2 Korte sider: x * h ganger 2-> Areal = 2xh Lange sider: 2x * h ganger 2-> Areal = 4xh Totalt areal: A = 4x ^ 2 + 6xh Bytter for h A = 4x ^ 2 + 6x * 4500 / x ^ 2 = 4x ^ 2 + 27000 / x = 4x ^ 2 + 27000x ^ -1 For å finne minimum, differensierer vi og angir A 'til 0
En gjenstand som tidligere hviler, glir 5 m nedover en rampe, med en helling på (3pi) / 8, og glir deretter horisontalt på gulvet i ytterligere 12 m. Hvis rampen og gulvet er laget av samme materiale, hva er materialets kinetiske friksjonskoeffisient?
= 0.33 skrå høyde på rampen l = 5m Helling av rampen theta = 3pi / 8 Lengde på horisontal gulv s = 12m vertikal høyde på rampen h = l * sintheta Masse av objektet = m Nå bruke bevaring av energi Førstegangs PE = arbeid utført mot friksjon mgh = mumgcostheta xxl + mumg xxs => h = mukostheta xxl + mu xxs => mu = h / (lcostheta + s) = (lsintheta) / (lcostheta + s) = (5xxsin (3pi / 8 )) / (5cos (3n / 8) 12) = 4,62 / 13,9 = 0,33
Hvis en gjenstand beveger seg ved 10 m / s over en overflate med en kinetisk friksjonskoeffisient på u_k = 5 / g, hvor mye tid vil det ta for objektet å slutte å bevege seg?
2 sekunder. Dette er et interessant eksempel på hvor rent det meste av en ligning kan avbryte med de riktige innledende forholdene. Først bestemmer vi akselerasjonen på grunn av friksjon. Vi vet at friksjonskraften er proporsjonal med den normale kraften som virker på objektet, og ser slik ut: F_f = mu_k mg Og siden F = ma: F_f = -mu_k mg = ma mu_k g = a men plugger inn den oppgitte verdien for mu_k ... 5 / gg = a 5 = en slik nå finner vi bare hvor lang tid det tar å stoppe det bevegelige objektet: v - at = 0 10 - 5t = 0 5t = 10 t = 2 sekunder.