Svar:
2 sekunder.
Forklaring:
Dette er et interessant eksempel på hvor rent det meste av en ligning kan avbryte med de riktige innledende forholdene. Først bestemmer vi akselerasjonen på grunn av friksjon. Vi vet at friksjonskraften er proporsjonal med normal kraft som virker på objektet og ser slik ut:
Og siden
men plugger inn den oppgitte verdien for
så nå skal vi bare finne ut hvor lang tid det tar å stoppe det bevegelige objektet:
En gjenstand med en masse på 7 kg er på en overflate med en kinetisk friksjonskoeffisient på 8. Hvor mye kraft er nødvendig for å akselerere objektet horisontalt ved 14 m / s ^ 2?
Anta at vi her vil anvende eksternt en kraft av F, og friksjonskraften vil forsøke å motsette seg bevegelsen, men som F> f så på grunn av netto kraften Ff, vil kroppen akselerere med en akselerasjon av en Så kan vi skrive Ff = ma gitt, a = 14 ms ^ -2, m = 7 kg, mu = 8 Så, f = muN = mumg = 8 × 7 × 9,8 = 548,8 N Så, F-548,8 = 7 × 14 Eller, F = 646,8 N
En fjær med en konstant på 9 (kg) / s ^ 2 ligger på bakken med en ende festet til en vegg. En gjenstand med en masse på 2 kg og en hastighet på 7 m / s kolliderer med og komprimerer fjæren til den stopper å bevege seg. Hvor mye vil våren komprimere?
Delta x = 7 / 3sqrt2 "" m E_k = 1/2 * m * v ^ 2 "Objektets kinetiske energi" E_p = 1/2 * k * Delta x ^ 2 "Den potensielle energien av vårkomprimert" E_k = E_p "Energibesparelse" avbryt (1/2) * m * v ^ 2 = avbryt (1/2) * k * Delta x ^ 2 m * v ^ 2 = k * Delta x ^ 2 2 * 7 ^ 2 = 9 * Delta x ^ 2 Delta x = sqrt (2 * 7 ^ 2/9) Delta x = 7 / 3sqrt2 "" m
En fjær med en konstant på 4 (kg) / s ^ 2 ligger på bakken med en ende festet til en vegg. En gjenstand med en masse på 2 kg og en hastighet på 3 m / s kolliderer med og komprimerer fjæren til den slutter å bevege seg. Hvor mye vil våren komprimere?
Våren vil komprimere 1,5m. Du kan beregne dette ved hjelp av Hooke's lov: F = -kx F er kraften som utøves på våren, k er vårens konstant og x er avstanden våren komprimerer. Du prøver å finne x. Du må vite k (du har dette allerede), og F. Du kan beregne F ved å bruke F = ma, hvor m er masse og a er akselerasjon. Du får masse, men trenger å vite akselerasjonen. For å finne akselerasjonen (eller retardasjon, i dette tilfellet) med informasjonen du har, bruk denne praktiske omleggingen av bevegelsesloven: v ^ 2 = u ^ 2 + 2as hvor v er slutthastigheten, du er