Svar:
Forklaring:
Vi kan bruke notasjonen:
# ((2), (- 1), (4)) xx ((5), (2), (- 2)) = | (ul (lue (i)), ul (lue (j)), ul (lue (k))), (2, -1,4), (5,2, -2) | #
# "" = | (-1,4), (2, -2) | ul (hat (i)) - | (2,4), (5, -2) | ul (hat (j)) + | (2, -1), (5,2) | ul (hat (k)) #
Ul (hat (j)) + (4 + 5) ul (lue (k)) #
# "" = -6 ul (lue (i)) +24 ul (lue (j)) +9 ul (lue (k)) #
# ' ' = ((-6),(24),(9)) #
Hva er kryssproduktet av [-1,0,1] og [3, 1, -1]?
[-1,2, -1] Vi vet at vecA xx vecB = || vecA || * || vecB || * sin (theta) hat, hvor hat er en enhet vektor gitt av høyre hånd regel. Så for enhetens vektorer hati, hat og hat i henhold til henholdsvis x, y og z, kan vi komme frem til følgende resultater. farge (svart) {farge (svart) {hati xx hati = vec0}, farge (svart) {qquad hati xx hatj = hatk}, farge (svart) {qquad hati xx hatk = -hatj}) ) (farge (svart) {hatk xx hat = hat}), (farge (svart) {hatk xx hati = hatj}, farge (svart) {qquad hatk xx hatj = -hati}, farge (svart) {qquad hatk xx hatk = vec0})) En annen ting du bør vite er at kryssproduktet
Hva er kryssproduktet av [-1, -1, 2] og [-1, 2, 2]?
[-1, -1,2] xx [-1,2,2] = [-6, 0, -3] Kryssproduktet mellom to vektorer vecA og vecB er definert som vecAxx vecB = || vecA || * || vecB || * sin (theta) * hat, hvor hat er en enhedsvektor gitt av høyrehåndsregelen, og theta er vinkelen mellom vecA og vecB og må tilfredsstille 0 <= theta <= pi. For av enhetens vektorer hati, hat og hat i henholdsvis x, y og z, ved hjelp av den ovenfor angitte definisjonen av kryssprodukt, blir følgende sett med resultater. farge (svart) {farge (svart) {hati xx hati = vec0}, farge (svart) {qquad hati xx hatj = hatk}, farge (svart) {qquad hati xx hatk = -hatj}) ) (far
Hva er kryssproduktet av [-1, -1, 2] og [1, -4, 0]?
Vec ax vec b = 8i + 2j + 5k vec a = [- 1, -1,2] "" vec b = [1, -4,0] vec øks vec b = i (-1 * 0 + 4 * 2 ) -j (-1 * 0-2 * 1) + k (1 * 4 + 1 * 1) vec øks vec b = 8i + 2j + 5k