Svar:
Merkelige vilkår:
Selv vilkår:
Hvor jeg er tallet i jevn sekvens fra 1 og oppover
Forklaring:
Det kan være flere muligheter her, men en er i det minste at den består av to sekvenser.
1) 3, 12, 48: Neste sikt er 4 ganger den nåværende.
2) -16 -24: Neste term er enten den nåværende termen -8 eller den nåværende termen ganger 1 1/2. Uten flere betingelser er det umulig å fortelle hva som er riktig.
Første og andre termer av en geometrisk sekvens er henholdsvis de første og tredje uttrykkene for en lineær sekvens. Den fjerde termen av den lineære sekvensen er 10 og summen av dens første fem sikt er 60. Finn de fem første ordene av den lineære sekvensen?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan representeres som c_0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første elementet for den geometriske sekvensen vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og andre av GS er den første og tredje av en LS"), (c_0a + 3Delta = 10- > "Den fjerde termen av den lineære sekvensen er 10"), (5c_0a + 10Delta = 60 -> "Summen av dens første fem sikt er 60"):} Løsning for c_0, a, Delta oppnår vi c_0 = 64/3 , a =
Den andre termen i en geometrisk sekvens er 12. Den fjerde termen i samme rekkefølge er 413. Hva er fellesforholdet i denne sekvensen?
Fellesratio r = sqrt (413/12) Andre sikt ar = 12 Fjerde sikt ar ^ 3 = 413 Fellesratio r = {ar ^ 3} / {ar} r = sqrt (413/12)
Kan du finne grensen til sekvensen eller bestemme at grensen ikke eksisterer for sekvensen {n ^ 4 / (n ^ 5 + 1)}?
Sekvensen har den samme oppførselen som n ^ 4 / n ^ 5 = 1 / n når n er stor. Du bør manipulere uttrykket bare litt for å gjøre setningen ovenfor klar. Del alle ordene med n ^ 5. n ^ 4 / (n ^ 5 + 1) = (n ^ 4 / n ^ 5) / ((n ^ 5 + 1) / n ^ 5) = (1 / n) / (1 + 1 / n ^ 5 ). Alle disse grensene eksisterer når n-> oo, så vi har: lim_ (n-> oo) n ^ 4 / (n ^ 5 + 1) = (n ^ 4 / n ^ 5) / ((n ^ 5 + 1 ) / n ^ 5) = (1 / n) / (1 + 1 / n ^ 5) = 0 / (1 + 0) = 0, slik at sekvensen har en tendens til 0