Svar:
# y = 13/16 (x + 15) ^ 2 - 6 #
Forklaring:
Ligningen av en parabol i vertexform er:
# y = a (x - h) ^ 2 + k # hvor (h, k) er koordinatene til toppunktet.
ligningen er da:
# y = a (x + 15) ^ 2 - 6 # Gitt punktet (- 19, 7) som ligger på parabolen tillater
substitusjon i ligningen for å finne en.
bruker (- 19, 7):
# 7 = a (-19 + 15) ^ 2 - 6 #
# 7 = a (- 4) ^ 2 - 6 = 16a - 6 # så 16a = 7 + 6 = 13
# rArr a = 13/16 # ligning av parabola er:
# y = 13/16 (x + 15) ^ 2 - 6 #
Hva er ligningen til parabolen som har et toppunkt på (0, 0) og går gjennom punkt (-1, -64)?
F (x) = - 64x ^ 2 Hvis vertexet er i (0 | 0), f (x) = ax ^ 2 Nå deles vi bare inn i punktet (-1, -64) -64 = a * 1) ^ 2 = aa = -64f (x) = - 64x ^ 2
Hva er ligningen til parabolen som har et toppunkt på (0, 0) og går gjennom punkt (-1, -4)?
Y = -4x ^ 2> "ligningen for en parabola i" farge (blå) "vertexform" er. • farge (hvitt) (x) y = a (xh) ^ 2 + k "hvor" (h, k) "er koordinatene til toppunktet og en" "er en multiplikator" "her" (h, k) = (0,0) "således" y = ax ^ 2 "for å finne en erstatning" (-1, -4) "i ligningen" -4 = ay = -4x ^ 2larrcolor (blå) "likning av parabola" -4x ^ 2 [-10, 10, -5, 5]}
Hva er ligningen på parabolen som har et toppunkt på (-15, -4) og går gjennom punkt (15,5)?
Y = 1/100 (x + 15) ^ 2-4 Ligningen for en parabola i farge (blå) "vertex form" er. farge (hvit) (2/2) farge (svart) (y = a (xh) ^ 2 + k) farge (hvit) (2/2) |)) hvor h, k) er koordinatene til toppunktet og a er en konstant. "her" (h, k) = (- 15, -4) rArry = a (x + 15) ^ 2-4 "for å finne et bruk punktet som parabolen går gjennom" "ved å bruke" (15,5) " er x = 15 og y = 5 "rArr5 = a (15 + 15) ^ 2-4 rArr900a = 9rArra = 1/100 rArry = 1/100 (x + 15) ^ 2-4larrcolor (rød)" i vertexform " graf {1/100 (x + 15) ^ 2-4 [-20, 20, -10, 10]}