Svar:
Verdien av uttrykket med
Forklaring:
Dette uttrykket har ingen verdi definert.
For å bevise at det ikke er noe slikt, la oss anta det
Hvis vi multipliserte slik likestilling av
Men dette er ikke mulig, fordi noen ekte tall multiplisert med
Så vår antagelse at
Antallet av et siste år er delt med 2 og resultatet vendt opp ned og delt opp med 3, deretter venstre til høyre opp og delt med 2. Så sifrene i resultatet blir reversert for å gjøre 13. Hva er det siste året?
Farge (rød) (1962) Her er de beskrevne trinnene: {: ("år", farge (hvit) ("xxx"), rarr ["resultat" 0]), (["resultat" 0] div 2 ,, rarr ["result" 1]), (["resultat" 2) "(oppnådd" 2 ")" delt opp med "3, rarr [" resultat "3"), (("venstre høyre opp") ,, ("ingen endring")), (["resultat" 3] div 2, rarr ["resultat" 4] 4] "siffer reversert" ,, rarr ["resultat" 5] = 13):} Arbeid bakover: farge (hvit) ("XX") ["resultat" 4] = 31 farge (hvit
Hva er 5 delt med x ^ 2 + 3x + 2 tilsatt med 3 delt med x + 1? (Se detaljer for formatering?
Sett på en fellesnevner. = 5 / (x + 2) (x + 1)) + 3 / (x + 1) = 5 / (x + 2) (x + 1)) + (3 (x + 2)) / x + 2) (x + 1)) = (5 + 3x + 6) / ((x + 2) (x + 1)) = (11 + 3x) / ((x + 2) (x + 1)) Forhåpentligvis hjelper dette!
Når et polynom er delt med (x + 2), er resten -19. Når det samme polynomet er delt med (x-1), er resten 2, hvordan bestemmer du resten når polynomet er delt med (x + 2) (x-1)?
Vi vet at f (1) = 2 og f (-2) = - 19 fra resten teorem Finn nå resten av polynom f (x) når delt med (x-1) (x + 2) Resten vil være av skjemaet Ax + B, fordi det er resten etter deling av en kvadratisk. Vi kan nå multiplisere divisor ganger kvotienten Q ... f (x) = Q (x-1) (x + 2) + Aks + B Neste sett inn 1 og -2 for x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Løsning av disse to ligningene, vi får A = 7 og B = -5 Resterende = Aks + B = 7x-5