
Svar:
Forklaring:
La
Summen av reciprocals av 2. og 3.:
Legge til fraksjonene:
Multipliser med 12:
Multipliser med
Utvidelse:
Samle inn som vilkår og forenkle:
Factor:
Bare
Så tallene er:
Summen av tre fortløpende heltall er 216. Hva er den største av de tre heltallene?

Det største tallet er 73 La det første heltallet være n Da n + (n + 1) + (n + 2) = 216 => 3n + 3 = 216 Trekk 3 fra begge sider 3n = 213 Del begge sider med 3 n = 71 Så den største numbren -> n + 2 = 71 + 2 = 73
Tre fortløpende heltall kan representeres av n, n + 1 og n + 2. Hvis summen av tre påfølgende tall er 57, hva er heltallene?

18,19,20 Sum er tillegg av tall slik at summen av n, n + 1 og n + 2 kan representeres som n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 så vårt første heltall er 18 (n) vårt andre er 19, (18 + 1) og vår tredje er 20, (18 + 2).
"Lena har 2 fortløpende heltall.Hun merker at summen deres er lik forskjellen mellom torgene sine. Lena plukker ytterligere 2 sammenhengende tall og merker det samme. Bevis algebraisk at dette er sant for noen 2 fortløpende heltall?

Vennligst henvis til forklaringen. Husk at de påfølgende heltalene varierer med 1. Derfor, hvis m er ett heltall, må det etterfølgende heltall være n + 1. Summen av disse to heltallene er n + (n + 1) = 2n + 1. Forskjellen mellom kvadratene er (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, som ønsket! Kjenn matematikkens glede.!