
Svar:
Forklaring:
Bruk kjederegelen.
For kvadratroten bruk kjeden regel igjen med
Bringer sammen over LCD:
Ta faktor av
Avbryt ut og få
Hvordan skiller du mellom sqrt (cos (x ^ 2 + 2)) + sqrt (cos ^ 2x + 2)?

(dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 ) / (dx) = 1 / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2)) * sen (x ^ 2 + 2) * 2x + 2sen (x + 2) ) / (dx) = (2xsen (x ^ 2 + 2) + 2sen (x + 2)) / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) (dx) = (avbryt2 (xsen (x ^ 2 + 2) + sen (x + 2))) / (cancel2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2)))
Hvordan forenkler du (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?

Stor matematisk formatering ...> farge (blå) ((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = farge (rød) 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = blå) ((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt -1))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) / (Sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1) ) xx (sqrt
Hvordan skiller du f (x) = sqrt (ln (1 / sqrt (xe ^ x)) ved hjelp av kjederegelen.?

Bare kjede regel igjen og igjen. f (x) = e ^ x (1 + x) / 4sqrt (xe ^ x) / (ln (1 / sqrt (xe ^ x)) (xe ^ x) ^ 3)) f (x) = sqrt Ok, dette vil bli vanskelig: f '(x) = (sqrt (ln (1 / sqrt (xe ^ x)))) = = 1 / (2sqrt (ln (1 / sqrt (xe ^ x)))) (ln (1 / sqrt (xe ^ x))) = = 1 / (2sqrt 1 / (1 / sqrt (xe ^ x)) (1 / sqrt xe ^ x)) = = 1 / (2sqrt (ln (1 / sqrt (xe ^ x))) * sqrt (xe ^ x) (1 / sqrt (xe ^ x))) (1 / sqrt (xe ^ x)) = = sqrt (xe ^ x) ^ - (1/2)) = = sqrt (xe ^ x) / (2sqrt (ln) (Xe ^ x) ^ - (3/2)) (xe ^ x) '= = sqrt (xe ^ x) / (4sqrt ln (1 / sqrt xe ^ x))) (xe ^ x) ^ - (3/2)) (xe ^ x) '= = sqrt (xe ^ x) / (4sqrt (xe