La oss finne grenser ved uendelig.
ved å dele teller og nevner av
og
Derfor er dens horisontale asymptoter
De ser slik ut:
Hva er rasjonell funksjon og hvordan finner du domene, vertikale og horisontale asymptoter. Også hva er "hull" med alle grenser og kontinuitet og diskontinuitet?
En rasjonell funksjon er hvor x er under brøkstangen. Delen under linjen kalles nevneren. Dette setter grenser på domenet til x, som nevneren kanskje ikke virker som 0 Enkelt eksempel: y = 1 / x domenet: x! = 0 Dette definerer også den vertikale asymptoten x = 0, fordi du kan lage x så nært til 0 som du vil, men aldri nå det. Det gjør en forskjell om du beveger deg mot 0 fra den positive siden av det negative (se grafen). Vi sier lim_ (x-> 0 ^ +) y = oo og lim_ (x-> 0 ^ -) y = -oo Så det er en diskontinuitetsgraf {1 / x [-16.02, 16.01, -8.01, 8.01]} På den annen side: Hvis
Hvilke egenskaper er grafen til funksjonen f (x) = (x + 1) ^ 2 + 2? Kryss av alt som gjelder. Domenet er alle ekte tall. Området er alle ekte tall større enn eller lik 1. Y-avgrensningen er 3. Grafen for funksjonen er 1 enhet opp og
Første og tredje er sanne, andre er falsk, fjerde er uferdig. - Domenet er faktisk alle ekte tall. Du kan omskrive denne funksjonen som x ^ 2 + 2x + 3, som er et polynom, og som sådan har domenet mathbb {R} Rekkevidden er ikke alle ekte tall større enn eller lik 1, fordi minimum er 2. I faktum. (x + 1) ^ 2 er en horisontal oversettelse (en enhet igjen) av "strandard" parabola x ^ 2, som har rekkevidde [0, infty). Når du legger til 2, skifter du grafen vertikalt med to enheter, så rekkevidden er [2, infty) For å beregne y-avskjæringen, plugg bare x = 0 i ligningen: du har y = 1 ^
Skiss grafen for y = 8 ^ x som angir koordinatene til noen punkter hvor grafen krysser koordinataksene. Beskriv fullstendig transformasjonen som forvandler grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?
Se nedenfor. Eksponentielle funksjoner uten vertikal transformasjon krysse aldri x-aksen. Som sådan vil y = 8 ^ x ikke ha x-avskjæringer. Det vil ha en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal likne følgende. grafen for y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhet til venstre slik at det er y- avskjære ligger nå på (0, 8). Også du vil se at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåpentligvis hjelper dette!