Vi vet at hvis
Så, det vi trenger er bare å finne kryssproduktet av de to vektorer som er gitt.
Så,
Så er enhetens vektor
To urner hver inneholder grønne baller og blå baller. Urn Jeg inneholder 4 grønne baller og 6 blå baller, og Urn ll inneholder 6 grønne baller og 2 blå baller. En ball trekkes tilfeldig fra hver urn. Hva er sannsynligheten for at begge ballene er blå?
Svaret er = 3/20 Sannsynlighet for å tegne en blueball fra Urn Jeg er P_I = farge (blå) (6) / (farge (blå) (6) + farge (grønn) (4)) = 6/10 Sannsynlighet for tegning en blåball fra Urn II er P_ (II) = farge (blå) (2) / (farge (blå) (2) + farge (grønn) (6)) = 2/8 Sannsynlighet at begge ballene er blå P = P_I * P_ (II) = 6/10 * 2/8 = 3/20
Hva er enhetsvektoren som er normal for flyet som inneholder <1,1,1> og <2,0, -1>?
Enhetsvektoren er = 1 / sqrt14 <-1,3, -2> Du må gjøre kryssproduktet av de to vektorene for å få en vektor vinkelrett på flyet: Korsproduktet er deteminant av | ((veci, vecj, veck), (1,1,1), (2,0, -1)) = veci (-1) -vecj (-1-2) + vik (-2) = <-1,3,2 > Vi sjekker ved å gjøre prikkproduktene. <-1,3, -2>. <1,1,1> = - 1 + 3-2 = 0 <-1,3, -2>. <2,0, -1> = - 2 + 0 + 2 = 0 Da punktproduktene er = 0, konkluderer vi at vektoren er vinkelrett på flyet. vecvη = sqrt (1 + 9 + 4) = sqrt14 Enhetsvektoren er hatv = vecv / ( vecvη) = 1 / sqrt14 <-1,3, -2>
Hva er enhetsvektoren som er ortogonal til flyet som inneholder <0, 4, 4> og <1, 1, 1>?
Svaret er = <0,1 / sqrt2, -1 / sqrt2> Vektoren som er vinkelrett på 2 andre vektorer er gitt av kryssproduktet. <0,4,4> x <1,1,1> = | (hati, hat, hat), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hat (-4) = <0,4, -4> Verifisering ved å gjøre punktproduktene <0,4,4>. <0,4, -4> = 0 + 16-16 = 0 <1,1,1>. <0,4, -4> = 0 + 4-4 = 0 Modulen på <0,4, -4> er = <0,4, - 4> = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Enhetsvektoren oppnås ved å dividere vektoren ved modulus = 1 / (4sqrt2) <0,4, -4> = <0,1 / sqrt2, -1 / sqrt2>