Svar:
I polære koordinater, r = a og
Forklaring:
Polarligningen for en full sirkel, referert til sentrum som pol, er r = a. Utvalget for
For halv sirkel, rekkevidden for
Så, svaret er
r = a og
Svar:
I rektangulære koordinater kan ligningen i den øvre halvdelen av en sirkel skrives:
#y = sqrt (r ^ 2 - (x-h) ^ 2) + k #
Forklaring:
Ligningen av en full sirkel med senter
# (x-h) ^ 2 + (y-k) ^ 2 = r ^ 2 #
Derfor kan den øvre halvdelen av en sirkel uttrykkes som:
#y = sqrt (r ^ 2 - (x-h) ^ 2) + k #
hvor
Hva er omkretsen av en 15-tommers sirkel hvis diameteren av en sirkel er direkte proporsjonal med sin radius og en sirkel med en diameter på 2 tommer har en omkrets på omtrent 6,28 tommer?
Jeg tror at den første delen av spørsmålet skulle si at omkretsen av en sirkel er direkte proporsjonal med diameteren. Det forholdet er hvordan vi får pi. Vi kjenner diameteren og omkretsen til den mindre sirkelen, henholdsvis "2 in" og "6.28 in". For å bestemme forholdet mellom omkrets og diameter deler vi omkretsen med diameteren, "6.28 in" / "2 in" = "3.14", som ser mye ut som pi. Nå som vi kjenner andelen, kan vi multiplisere diameteren til den større sirkelen ganger andelen for å beregne omkretsen av sirkelen. "15 i" x
Du får en sirkel B hvis senter er (4, 3) og et punkt på (10, 3) og en annen sirkel C hvis senter er (-3, -5) og et punkt på sirkelen er (1, -5) . Hva er forholdet mellom sirkel B og sirkel C?
3: 2 "eller" 3/2 "vi trenger for å beregne radiusene i sirkler og sammenlign" "radius er avstanden fra sentrum til punktet" "på sirkelen" "sentrum av B" = (4,3 ) "og punktet er" = (10,3) "siden y-koordinatene er begge 3, er radiusen" "forskjellen i x-koordinatene" rArr "radius av B" = 10-4 = 6 "senter av C "= (- 3, -5)" og punkt er "= (1, -5)" y-koordinater er begge - 5 "rArr" radius av C "= 1 - (-3) = 4" = (farge (rød) "radius_B") / (farge (rød) "radius_C
Sirkel A har en radius på 2 og et senter på (6, 5). Sirkel B har en radius på 3 og et senter på (2, 4). Hvis sirkel B er oversatt av <1, 1>, overlapper den sirkel A? Hvis ikke, hva er den minste avstanden mellom poeng i begge sirkler?
"sirkler overlapper"> "Hva vi må gjøre her er å sammenligne avstanden (d)" "mellom sentrene til summen av radien" • "hvis summen av radier"> d "så sirkler overlapper" • "hvis summen av radius "<d", da ingen overlapping "" før beregning d må vi finne det nye senteret "" av B etter den oppgitte oversettelsen "" under oversettelsen "<1,1> (2,4) til (2 + 1, 4 + 1) til (3,5) larrcolor (rød) "nytt senter for B" "for å beregne d bruk" farge (blå) "