Svar:
Ligningen er
Forklaring:
Ethvert punkt
Derfor,
graf (x ^ 2-12 (y + 3)) (y + 6) ((x ^ 2) + (y ^ 2) -0,03) = 0 -20,27, 20,27, -10,14,10,14}
Hva er parabolas likning med fokus på (10,19) og en direktrise av y = 22?
Ligning av parabola er x ^ 2-20x + 6y-23 = 0 Her er directrixen en horisontal linje y = 22. Siden denne linjen er vinkelrett på symmetriaksen, er dette en vanlig parabol, hvor x-delen er kvadret. Nå er avstanden til et punkt på parabolen fra fokus på (10,19) alltid lik det mellom toppunktet og direktoren skal alltid være lik. La dette punktet være (x, y). Avstanden fra fokus er sqrt ((x-10) ^ 2 + (y-19) ^ 2) og fra directrix blir | y-22 | Derfor er (x-10) ^ 2 + (y-19) ^ 2 = (y-22) ^ 2 eller x ^ 2-20x + 100 + y ^ 2-38y + 361 = y ^ 2-44y + 484 eller x ^ 2-20x + 6y + 461-484 = 0 eller x ^ 2-20x +
Hva er parabolas likning med fokus på (-1, -2) og en direktrise av y = -10?
Y = x ^ 2/16 + x / 8-95 / 16 La (x_0, y_0) være et punkt på parabolen. Fokus på parabolen er gitt ved (-1, -2) Avstanden mellom de to punktene er sqrt ((x_0 - (- 1)) ^ 2+ (y_0 - (- 2)) ^ 2 eller sqrt ((x_0 + 1 ) ^ 2 + (y_0 + 2) ^ 2 Nå er avstanden mellom punktet (x_0, y_0) og den givne direktoren y = -10, er | y_0 - (- 10) | | y_0 + 10 | Equate de to avstandsuttrykkene og kvadrer begge sider. (x_0 + 1) ^ 2 + (y_0 + 2) ^ 2 = (y_0 + 10) ^ 2 eller (x_0 ^ 2 + 2x_0 + 1) + (y_0 ^ 2 + 4y_0 + 4) = (y_0 ^ 2 + 20y_0 + 100) Omarrangere og ta uttrykk som inneholder y_0 til en side x_0 ^ 2 + 2x_0 + 1 + 4-100 = 20y_0
Hva er parabolas likning med fokus på (1,3) og en direktrise av y = 2?
(x-1) ^ 2 = 2y-5 La deres være et punkt (x, y) på parabola. Avstanden fra fokus på (1,3) er sqrt ((x-1) ^ 2 + (y-3) ^ 2) og avstanden fra directrix y = 2 vil være y-2 Derfor vil ligningen være sqrt ( -1) 2 + (y-3) ^ 2 = (y-2) ^ 2 eller (x-1) ^ 2 + y ^ 2-6y + 9 = y ^ 2-4y + 4 eller (x-1) ^ 2 = 2y-5 graf {(x-1) ^ 2 = 2y-5 [-6,6 2, 10]}