Svar:
Utvalg av
Forklaring:
Først merk at
Omfanget av en funksjon er settet med alle gyldige utganger ("
Domenet til alle rette linjer (unntatt de vertikale) er
Derfor domenet til
Også siden
Svar:
Forklaring:
Bare husk at rekkevidden for en lineær funksjon er alltid alle reelle tall med mindre det er horisontalt (ikke har
Et eksempel på en lineær funksjon med en rekkevidde av ikke alle reelle tall ville være
Jeg håper det hjelper!
Grafen av funksjonen f (x) = (x + 2) (x + 6) er vist nedenfor. Hvilken uttalelse om funksjonen er sant? Funksjonen er positiv for alle reelle verdier av x hvor x> -4. Funksjonen er negativ for alle reelle verdier av x hvor -6 <x <-2.
Funksjonen er negativ for alle reelle verdier av x hvor -6 <x <-2.
Hvilken del av en parabola er modellert av funksjonen y = -sqrtx og hva er domenet og rekkevidden for funksjonen?
Under y = -sqrtx er den nederste delen av parabolen y ^ 2 = x Nedenfor er grafen y ^ 2 = x graf {y ^ 2 = x [-10, 10, -5, 5]} Nedenfor er grafen y = -sqrtx-grafen {-sqrtx [-10, 10, -5, 5]} Grafen y = -sqrtx har et domene av x> = 0 og y <= 0
Hvis f (x) = 3x ^ 2 og g (x) = (x-9) / (x + 1), og x! = - 1, hva vil f (g (x)) være lik? g (f (x))? f ^ -1 (x)? Hva ville domenet, rekkevidden og nullene for f (x) være? Hva ville domenet, rekkevidden og nullene for g (x) være?
F (g (x)) = 3 (x-9) / (x + 1)) 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) 1 (x) = rot () (x / 3) D_f = {x i RR}, R_f = {f (x) i RR; f (x)> = 0} D_g = {x i RR; x! = - 1}, R_g = {g (x) i RR; g (x)! = 1}