Svar:
Jeg fant:
eller
Forklaring:
Ring dine odde heltall:
og
Ved å bruke dine forhold har vi:
ved hjelp av kvadratisk formel:
så:
Våre tall kan være:
hvis vi bruker
og
hvis vi bruker
og
Tre påfølgende positive like heltall er slik at produktet det andre og tredje heltall er tjue mer enn ti ganger det første heltall. Hva er disse tallene?
La tallene være x, x + 2 og x + 4. Deretter (x + 2) (x + 4) = 10x + 20 x ^ 2 + 2x + 4x + 8 = 10x + 20 x ^ 2 + 6x + 8 = 10x + 20 x ^ 2 - 4x - 12 = 0 (x - 6) (x + 2) = 0 x = 6 og -2 Siden problemet angir at heltallet må være positivt, har vi at tallene er 6, 8 og 10. Forhåpentligvis hjelper dette!
Hva er tre påfølgende odde positive heltall slik at tre ganger summen av alle tre er 152 mindre enn produktet av det første og andre heltall?
Tallene er 17,19 og 21. La de tre påfølgende odde positive heltallene være x, x + 2 og x + 4 tre ganger deres sum er 3 (x + x + 2 + x + 4) = 9x + 18 og produkt av først og andre heltall er x (x + 2) som tidligere er 152 mindre enn sistnevnte x (x + 2) -152 = 9x + 18 eller x ^ 2 + 2x-9x-18-152 = 0 eller x ^ 2-7x + 170 = 0 eller (x-17) (x + 10) = 0 og x = 17 eller -10 da tallene er positive, de er 17,19 og 21
Ett tall er 2 mer enn 2 ganger et annet. Deres produkt er 2 mer enn 2 ganger summen deres, hvordan finner du de to heltallene?
La oss ringe til det minste tallet x. Da vil det andre tallet være 2x + 2 Sum: S = x + (2x + 2) = 3x + 2 Produkt: P = x * (2x + 2) = 2x ^ 2 + 2x P = 2 * S + 2 Bytter: 2x ^ 2 + 2x = 2 * (3x + 2) + 2 = 6x + 4 + 2 Alt til en side: 2x ^ 2-4x-6 = 0-> divider alt ved 2 x ^ 2-2x-3 = 0- > faktorise: (x-3) (x + 1) = 0-> x = -1orx = 3 Hvis vi bruker 2x + 2 for det andre nummeret, får vi parene: (-1,0) og (3, 8)