Svar:
165
Forklaring:
Sett opp en andel
150 = de totale delene y
110% = prosentandel
100% = total prosent.
Ved å bruke prinsippet om forhold velger jeg å sette 100 som ekvivalent til den opprinnelige mengden 150 og 110 som ekvivalent til den nye ukjente mengden.
La
Multipliser begge sider med 150
Dette gir
Svar:
165
Detaljert forklaring gitt. Den faktiske matte er veldig kort.
Forklaring:
Symbolet% oppfører sig som en måleenhet, men en som er verdt
Så
Spørsmålet sier
Oversette ordet 'av' til matematikk blir det multiplisert
Å gi:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hva er et ekte tall, et helt tall, et heltall, et rasjonelt tall og et irrasjonelt tall?
Forklaring Nedenfor Rasjonelle tall kommer i 3 forskjellige former; heltall, fraksjoner og avslutende eller tilbakevendende desimaler som 1/3. Irrasjonelle tall er ganske "rotete". De kan ikke skrives som brøker, de er uendelige, ikke-repeterende decimaler. Et eksempel på dette er verdien av π. Et helt tall kan kalles et heltall og er enten et positivt eller negativt tall, eller null. Et eksempel på dette er 0, 1 og -365.
Hvilket realtallsubsett tilhører følgende ekte tall: 1/4, 2/9, 7,5, 10,2? heltall naturlige tall irrasjonelle tall rasjonelle tall tahaankkksss! <3?
Alle de identifiserte tallene er rasjonelle; De kan uttrykkes som en brøkdel som involverer (bare) 2 heltall, men de kan ikke uttrykkes som enkelt heltall
Med hvilken eksponent blir kraften til et tall 0? Som vi vet at (et hvilket som helst tall) ^ 0 = 1, så hva skal verdien av x i (et hvilket som helst tall) ^ x = 0?
Se nedenfor La z være et komplekst tall med struktur z = rho e ^ {i phi} med rho> 0, rho i RR og phi = arg (z) vi kan stille dette spørsmålet. For hvilke verdier av n i RR forekommer z ^ n = 0? Utvikle litt mer z ^ n = rho ^ ne ^ {i phi} = 0-> e ^ {i phi} = 0 fordi ved hypotese rho> 0. Så bruk Moivre's identitet e ^ {i phi} = cos (n phi ) + i sin (n phi) da z ^ n = 0-> cos (n phi) + i sin (n phi) = 0-> n phi = pi + 2k pi, k = 0, pm1, pm2, pm3, cdots Til slutt, for n = (pi + 2k pi) / phi, k = 0, pm1, pm2, pm3, cdots får vi z ^ n = 0