Svar:
Forklaring:
gitt:
Hvis vi antar at ønsket parabola har en vertikal akse, da er vertexformen til en slik parabola
Derfor må vår ønskede parabola ha vertexformen
Videre vet vi at "tilleggspunktet"
Derfor
Plugging denne verdien tilbake til vår øreversjon av ønsket parabol, får vi
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hvis symmetriaksen ikke er vertikal:
1 Hvis det er vertikal, kan en lignende prosess brukes sammen med generell form
2 Hvis det ikke er vertikal eller horisontal, blir prosessen mer involvert (spør som et separat spørsmål hvis dette er tilfellet, generelt må du kjenne vinkelen på symmetriaksen for å kunne utvikle et svar).
Hva er ligningen til parabolen som har et toppunkt på (0, 0) og går gjennom punkt (-1, -64)?
F (x) = - 64x ^ 2 Hvis vertexet er i (0 | 0), f (x) = ax ^ 2 Nå deles vi bare inn i punktet (-1, -64) -64 = a * 1) ^ 2 = aa = -64f (x) = - 64x ^ 2
Hva er ligningen til parabolen som har et toppunkt på (0, 0) og går gjennom punkt (-1, -4)?
Y = -4x ^ 2> "ligningen for en parabola i" farge (blå) "vertexform" er. • farge (hvitt) (x) y = a (xh) ^ 2 + k "hvor" (h, k) "er koordinatene til toppunktet og en" "er en multiplikator" "her" (h, k) = (0,0) "således" y = ax ^ 2 "for å finne en erstatning" (-1, -4) "i ligningen" -4 = ay = -4x ^ 2larrcolor (blå) "likning av parabola" -4x ^ 2 [-10, 10, -5, 5]}
Hva er ligningen til parabolen som har et toppunkt på (0, 8) og går gjennom punkt (5, -4)?
Det er et uendelig antall parabolske ligninger som oppfyller de oppgitte kravene. Hvis vi begrenser parabolen til å ha en vertikal symmetriakse, så: farge (hvit) ("XXX") y = -12 / 25x ^ 2 + 8 For en parabola med en vertikal symmetriakse, er den generelle form for parabola ekvation med vertex ved (a, b) er: farge (hvit) ("XXX") y = m (xa) ^ 2 + b Ved å gi de oppgitte vertexverdiene (0,8) for (a, b) ) ("XXX") y = m (x-0) ^ 2 + 8 og hvis (5, -4) er en løsning på denne ligningen, så er farge (hvit) ("XXX") - 4 = m ((- 5) ^ 2-0) +8 rArr m = -12 / 25 og den pa