Hva er enhetsvektoren som er normal for flyet som inneholder (- 3 i + j-k) og # (- 4i + 5 j - 3k)?

Hva er enhetsvektoren som er normal for flyet som inneholder (- 3 i + j-k) og # (- 4i + 5 j - 3k)?
Anonim

Svar:

Enhetsvektoren er # = <2 / sqrt150, -5 / sqrt150, -11 / sqrt150> #

Forklaring:

Vektoren vinkelrett på 2 vektorer beregnes med determinanten (kryssproduktet)

# | (veci, vecj, veck), (d, e, f), (g, h, i) | #

hvor # <D, e, f> # og # <G, h, i> # er de 2 vektorer

Her har vi #veca = <- 3,1, -1> # og #vecb = <- 4,5, -3> #

Derfor, # | (veci, vecj, veck), (-3,1, -1), (-4,5, -3) | #

# = Veci | (1, -1), (5, -3) | -vecj | (-3, -1), (-4, -3) | + Veck | (-3,1), (-4,5) | #

# = Veci (1 * -3 + 1 * 5) -vecj (-3 * -3-1 * 4) + veck (-3 * 5 + 1 * 4) #

# = <2, -5, -11> = vecc #

Verifisering ved å gjøre 2 dot produkter

#〈2,-5,-11〉.〈-3,1,-1〉=-6-5+11=0#

#〈2,-5,-11〉.〈-4,5,-3〉=-8-25+33=0#

Så, # Vecc # er vinkelrett på # Veca # og # Vecb #

Enhetsvektoren er

# = Vecc / (|| || vecc) #

# = 1 / sqrt (4 + 25 + 121) <2, -5, -11> #

# = 1 / sqrt150 <2, -5, -11> #