Svar:
Summen av vinkler gir en ensidig trekant. Halvparten av inngangssiden er beregnet fra
Forklaring:
Summen av alle trekanter i grader er
Vi legger merke til at vinklene
For
For å beregne halvparten av
Derfor kan området beregnes via arealet på torget som er dannet, som vist i følgende bilde:
Siden vi vet at:
Så til slutt:
En trekant har sider A, B og C. Vinkelen mellom sider A og B er pi / 6 og vinkelen mellom sider B og C er pi / 12. Hvis side B har en lengde på 3, hva er området for trekanten?
Areal = 0,8235 kvadrat enheter. Først og fremst la meg betegne sidene med små bokstaver a, b og c. La meg nevne vinkelen mellom side a og b ved / _ C, vinkel mellom side b og c med / _ A og vinkel mellom side c og a by / _ B. Merk: - tegnet / _ leses som "vinkel" . Vi er gitt med / _C og / _A. Vi kan beregne / _B ved å bruke det faktum at summen av noen trekanters indre engler er pi radian. betyr / _A + / _ B + / _ C = pi impliserer pi / 12 + / _ B + (pi) / 6 = pi impliserer / _B = pi- (pi / 6 + pi / 12) = pi- (3pi) / 12 = pi-pi / 4 = (3pi) / 4 innebærer / _B = (3pi) / 4 Det gis den siden b =
En trekant har sider A, B og C. Vinkelen mellom sider A og B er (pi) / 2 og vinkelen mellom sider B og C er pi / 12. Hvis side B har en lengde på 45, hva er området for trekanten?
271.299 vinkelen mellom A og B = Pi / 2, slik at trekanten er en rettvinklet trekant. I en rettvinklet trekant, tanet i en vinkel = (Motsatt) / (Tilstøtende) Bytter i de kjente verdiene Tan (Pi / 2) = 3.7320508 = 45 / (Tilgrensende) Omarrangering og forenkling Tilgrensende = 12.057713 Arealet av en trekant = 1/2 * base * høyde Erstatter i verdiene 1/2 * 45 * 12.057713 = 271.299
En trekant har sider A, B og C. Vinkelen mellom sider A og B er (5pi) / 12 og vinkelen mellom sider B og C er pi / 12. Hvis side B har en lengde på 4, hva er området for trekanten?
Pl, se nedenfor Vinkelen mellom sidene A og B = 5pi / 12 Vinkelen mellom sidene C og B = pi / 12 Vinkelen mellom sidene C og A = pi -5pi / 12-pi / 12 = pi / 2 dermed trekanten er rett vinklet en og B er dens hypotenuse. Derfor side A = Bsin (pi / 12) = 4sin (pi / 12) side C = Bcos (pi / 12) = 4cos (pi / 12) Så arealet = 1 / 2ACsin (pi / 2) = 1/2 * 4sin (pi / 12) * 4cos (pi / 12) = 4 * 2sin (pi / 12) * cos (pi / 12) = 4 * sin (2pi / 12) = 4 * sin (pi / 6) = 4 * 1 / 2 = 2 kvm enhet