Svar:
Forklaring:
Så skriver vi først dette:
Ved tillegg får vi:
Ved hjelp av
Deretter bruker du
Nå bruker du
Jeg forlot denne ut, så vi kan jobbe med det separat.
Vi har
Hva er reglene for å lage partielle fraksjoner?
Vær forsiktig, det kan være litt komplisert Jeg vil gå gjennom noen få eksempler, siden det er utallige problemer med egen løsning. Si at vi har (f (x)) / (g (x) ^ n) Vi må skrive det som en sum. (f (x)) / (g (x) ^ n) = sum_ (a = 1) ^ nA / (g (x) ^ a) For eksempel ) = A / (g (x)) + B / (g (x) ^ 2) + C / (g (x) ^ 3) Eller vi har (f (x)) / (g (x) ^ ah (x) ^ b) = sum_ (n_1 = 1) ^ aA / (g (x) ^ (n_1)) + sum_ (n_2 = 1) ^ bB / (h (x) ^ (n_2)) For eksempel f (x)) / (g (x) ^ 2 h (x) ^ 3) = A / (g (x)) + B / (g (x) ^ 2) + C / (h (x)) + D / (h (x) ^ 2) + E / (h (x) ^ 3) Neste bit kan ikke skrives som en
Dette spørsmålet er for min 11 år gamle ved hjelp av fraksjoner for å finne svar ... hun trenger å finne ut hva 1/3 av 33 3/4 ..... Jeg vil ikke ha svar ..... bare hvordan å sette opp problemet slik at jeg kan hjelpe henne .... hvordan deler du fraksjoner?
11 1/4 Her deler du ikke brøker. Du multipliserer dem faktisk. Uttrykket er 1/3 * 33 3/4. Det ville være 11 1/4. En måte å løse dette på er å konvertere 33 3/4 til en feilaktig brøkdel. 1 / avbryt3 * avbryt135 / 4 = 45/4 = 11 1/4.
Hvordan integrerer du f (x) = (3x ^ 2-x) / ((x ^ 2 + 2) (x-3) (x-7)) ved hjelp av partielle fraksjoner?
35 / 51ln | x-7 | -6 / 11ln | x-3 | -1/561 (79 / 2ln (x ^ 2 + 2) + 47sqrt2tan ^ -1 ((sqrt2x) / 2)) + C Siden nevneren er allerede innregnet, alt vi trenger for å gjøre partielle fraksjoner, er løsningen for konstantene: (3x ^ 2-x) / ((x ^ 2 + 2) (x-3) (x-7)) = (Ax + B) / (x ^ 2 + 2) + C / (x-3) + D / (x-7) Vær oppmerksom på at vi trenger både en x og en konstant term på venstre flertall fordi telleren alltid er 1 grad lavere enn nevneren. Vi kunne multiplisere gjennom den venstre side nevner, men det ville være en stor mengde arbeid, slik at vi i stedet kan være klare og bruke d