Svar:
Forklaring:
Formel for en sirkel sentrert på
graf {(x-2) ^ 2 + (y-2) ^ 2 = 16 -6,67, 13,33, -3,08, 6,92}
Svar:
Forklaring:
# "ligningen i en sirkel i standardform er" #
#COLOR (rød) (bar (ul (| farge (hvit) (2/2) (sort) ((Xa) ^ 2 + (yb) ^ 2 = r ^ 2) farge (hvit) (2/2) |))) #
# "hvor" (a, b) "er koordinatene til senteret og r" #
# "radius" #
# "her" (a, b) = (2,2) "og r = 4 #
# (x-2) ^ 2 + (y-2) ^ 2 = 16larrcolor (rød) "ekvation av sirkel" #
Sirkel A har et senter ved (5, -2) og en radius på 2. Sirkel B har et senter ved (2, -1) og en radius på 3. Overlapper sirklene? Hvis ikke, hva er den minste avstanden mellom dem?
Ja, sirklene overlapper. beregne senteret til sentrumsavvik La P_2 (x_2, y_2) = (5, -2) og P_1 (x_1, y_1) = (2, -1) d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1 ) ^ 2) d = sqrt ((5-2) ^ 2 + (- 2--1) ^ 2) d = sqrt ((3 ^ 2 + (- 1) ^ 2) d = sqrt10 = 3,16 Beregn summen av radien r_t = r_1 + r_2 = 3 + 2 = 5 r_1 + r_2> d sirklene overlapper Gud velsigne .... Jeg håper forklaringen er nyttig.
Sirkel A har et senter ved (-9, -1) og en radius på 3. Sirkel B har et senter ved (-8, 3) og en radius på 1. Overlapper sirklene? Hvis ikke, hva er den minste avstanden mellom dem?
Sirklene overlapper ikke. Minste avstand mellom dem = sqrt17-4 = 0.1231 Fra de oppgitte dataene: Sirkel A har et senter ved (-9, -1) og en radius på 3. Sirkel B har et senter ved (-8,3) og en radius på 1. Overlapper sirklene? Hvis ikke, hva er den minste avstanden mellom dem? Løsning: Beregn avstanden fra sirkel A til senter av sirkel B. d = sqrt ((x_a-x_b) ^ 2 + (y_a-y_b) ^ 2) d = sqrt ((- 9--8) ^ 2 + (-1-3) ^ 2) d = sqrt ((- 1) ^ 2 + (- 4) ^ 2) d = sqrt (1 + 16) d = sqrt17 d = 4.1231 Beregn summen av radiusene: S = r_a + r_b = 3 + 1 = 4 Minste avstand mellom dem = sqrt17-4 = 0.1231 Gud velsigne .... Jeg h&
Sirkel A har et senter ved (3, 2) og en radius på 6. Sirkel B har et senter ved (-2, 1) og en radius på 3. Overlapper sirklene? Hvis ikke, hva er den minste avstanden mellom dem?
Avstanden d (A, B) og radiusen til hver sirkel r_A og r_B må tilfredsstille tilstanden: d (A, B) <= r_A + r_B I dette tilfellet gjør de slik at sirklene overlapper. Hvis de to sirkler overlapper, betyr det at minst avstand d (A, B) mellom senterene deres må være mindre enn summen av deres radius, slik det kan forstås fra bildet: (tall i bildet er tilfeldig fra internett) Så å overlappe minst en gang: d (A, B) <= r_A + r_B Den euklidiske avstanden d (A, B) kan beregnes: d (A, B) = sqrt ((Δx) ^ 2 + (Δy) ^ 2) Derfor: d (A, B) <= r_A + r_B sqrt ((Δx) ^ 2 + (Δy) ^ 2) <= r_A + r_B s