Svar:
Utvalget er
Forklaring:
For å finne rekkevidden til et sett med tall, finner du forskjellen mellom den minste verdien og den største verdien. Så, først av, omordne tallene fra minst til største.
Du kan se, som det er vist ovenfor, at det minste nummeret er
Så, området er
Anta at y varierer direkte med x, og når y er 16, x er 8. a. Hva er den direkte variasjonsligningen for dataene? b. Hva er y når x er 16?
Y = 2x, y = 32 "den opprinnelige setningen er" ypropx "for å konvertere til en ligning multiplisere med k den konstante variasjonen" rArry = kx "for å finne k bruke den gitte tilstanden" "når" y = 16, x = 8 y = kxrArrk = y / x = 16/8 = 2 "ligning er" farge (rød) (bar (ul (| farge (hvit) (2/2) farge (svart) (y = 2x) farge ) (2/2) |))) "når" x = 16 y = 2xx16 = 32
Hva er rekkevidden av dataene: 99,7, 101,8, 103,6, 98,6, 100,2. 102,9?
Spekteret er 5. Spekteret er forskjellen mellom det største datasettet og det minste. 103,6 til 98,6 = 5
Hvis f (x) = 3x ^ 2 og g (x) = (x-9) / (x + 1), og x! = - 1, hva vil f (g (x)) være lik? g (f (x))? f ^ -1 (x)? Hva ville domenet, rekkevidden og nullene for f (x) være? Hva ville domenet, rekkevidden og nullene for g (x) være?
F (g (x)) = 3 (x-9) / (x + 1)) 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) 1 (x) = rot () (x / 3) D_f = {x i RR}, R_f = {f (x) i RR; f (x)> = 0} D_g = {x i RR; x! = - 1}, R_g = {g (x) i RR; g (x)! = 1}