Svar:
Forklaring:
gitt
Ved å bruke kvadratisk formel på dette har vi:
Så,
Så den eneste løsningen er
Integrasjon ved hjelp av substitusjon intsqrt (1 + x ^ 2) / x dx? Hvordan løser jeg dette spørsmålet, vær så snill, hjelp meg?
Sqrt (1 + x ^ 2) -1/21n (abs (sqrt (1 + x ^ 2) +1)) + 1 / 2ln (abs (sqrt (1 + x ^ 2) -1)) + C Bruk deg ^ 2 = 1 + x ^ 2, x = sqrt (u ^ 2-1) 2u (du) / (dx) = 2x, dx = (udu) / x intsqrt (1 + x ^ 2) / xdx = int usqrt (1 + x ^ 2)) / x ^ 2du intu ^ 2 / (u ^ 2-1) du = int1 + 1 / (u ^ 2-1) du 1 / (u ^ 2-1) = 1 / (u + 1) (u-1)) = A / (u + 1) + B / (u-1) 1 = A (u-1) + B (u + 1) u = 1 1 = 2B, B = 1/2 u = -1 1 = -2A, A = -1/2 int1-1 / (2 (u + 1)) + 1 / (2 (u-1)) du = u-1 / 2ln (abs (u + 1)) + 1 / 2ln (abs (u-1)) + C Å sette u = sqrt (1 + x ^ 2) tilbake i gir: sqrt (1 + x ^ 2) -1/21n abs (sqrt (1 + x ^ 2) 1)) + 1 / 2ln (abs (sqrt
Ved et forsøk på forsøk, løper en 95,0 kg løpebag mot slutten sonen ved 3,75 m / s. En 111 kg linebacker som beveger seg på 4,10 m / s, møter løperen i en kollisjon på hodet. Hvis de to spillerne holder sammen, hva er deres hastighet like etter kollisjonen?
V = 0.480 m.s ^ (- 1) i retning av at linebackeren beveget seg inn. Kollisjonen er uelastisk når de holder sammen. Momentum er bevart, kinetisk energi er ikke. Trekk ut det opprinnelige momentumet, som vil være lik det endelige momentumet, og bruk det for å løse for slutthastigheten. Første momentum. Linebacker og løperen beveger seg i motsatt retning ... velg en positiv retning. Jeg vil ta retningen til linebackeren som positiv (han har større masse og hastighet, men du kan ta løperens retning som positiv hvis du vil, bare være konsekvent). Vilkår: p_i, total innledende mo
Når har du "ingen løsning" når du løser kvadratiske ligninger ved hjelp av kvadratisk formel?
Når b ^ 2-4ac i den kvadratiske formelen er negativ Bare i tilfelle b ^ 2-4ac er negativ, er det ingen løsning i reelle tall. På flere faglige nivåer vil du studere komplekse tall for å løse disse sakene. Men dette er en annen historie