Svar:
Lengden på den ene siden er
Forklaring:
La side lengde, høyde (høyde) og område være henholdsvis s, h og A.
Høyden til en trekant øker med en hastighet på 1,5 cm / min mens trekantens område øker med en hastighet på 5 cm / min. I hvilken grad er bunnen av trekanten endret når høyden er 9 cm og arealet er 81 kvadrat cm?
Dette er en relatert type (av endring) type problem. Berørte variablene er a = høyde A = området, og siden området av en trekant er A = 1 / 2ba, trenger vi b = base. Gitte endringshastigheter er i enheter per minutt, så den (usynlige) uavhengige variabelen er t = tid i minutter. Vi blir gitt: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min Og vi blir bedt om å finne (db) / dt når a = 9 cm og A = 81cm "" 2 A = 1 / 2ba, differensiering med t, får vi: d / dt (A) = d / dt (1 / 2ba). Vi trenger produktregelen til høyre. (dA) / dt = 1/2 (db) / dt a + 1 / 2b
Basen av en trekant av et gitt område varierer omvendt som høyden. En trekant har en base på 18cm og en høyde på 10cm. Hvordan finner du høyden på en trekant med like område og med en base på 15cm?
Høyde = 12 cm Arealet av en trekant kan bestemmes med ligningsområdet = 1/2 * base * høyde Finn området for den første trekant ved å erstatte målingene av trekanten i ligningen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 La høyden av den andre triangelen = x. Så området ligningen for den andre trekanten = 1/2 * 15 * x Siden områdene er like, 90 = 1/2 * 15 * x ganger begge sider ved 2. 180 = 15x x = 12
PERIMETER av likevel trapesformet ABCD er lik 80 cm. Lengden på linjen AB er 4 ganger større enn lengden på en CD-linje som er 2/5 lengden på linjen BC (eller linjene som er like i lengden). Hva er området med trapesen?
Trapesområdet er 320 cm ^ 2. La trapesen være som vist nedenfor: Her, hvis vi antar mindre side CD = a og større side AB = 4a og BC = a / (2/5) = (5a) / 2. Som sådan er BC = AD = (5a) / 2, CD = a og AB = 4a Derav omkrets er (5a) / 2xx2 + a + 4a = 10a Men omkretsen er 80 cm .. Derav a = 8 cm. og to paallelsider vist som a og b er 8 cm. og 32 cm. Nå tegner vi perpendikulære fron C og D til AB, som danner to identiske rettvinklede triangler, hvis hypotenuse er 5 / 2xx8 = 20 cm. og basen er (4xx8-8) / 2 = 12 og dermed er høyden sqrt (20 ^ 2-12 ^ 2) = sqrt (400-144) = sqrt256 = 16 og dermed so