Svar:
Domene:
Område:
Forklaring:
La y = et polynom av grad n
Som
Her, n = 2 og
y = -x ^ 2-14x-52) = - (x + 7) ^ 2-3 <= - 3, hvilket gir
Domenet er
Se graf. grafer {(- x ^ 2-14x-52-y) (y + 3) (x + 7) ^ 2 + (y + 3) ^ 2.01) = 0 -20, 0, -10, 0}
Graf viser parabolen og dens høyeste punkt, toppunktet V (-7, -3)
Røttene til den kvadratiske ligningen 2x ^ 2-4x + 5 = 0 er alfa (a) og beta (b). (a) Vis at 2a ^ 3 = 3a-10 (b) Finn den kvadratiske ligningen med røttene 2a / b og 2b / a?
Se nedenfor. Finn først røttene til: 2x ^ 2-4x + 5 = 0 Bruk kvadratisk formel: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -sqrt (6)) / 2 alfa = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) 3 = 3 ((2 + isqrt (6)) / 2 ) (2 + isqrt (6)) / 2) ^ 3 = (2 + 2) * (- 28 + 6isqrt (6)) / 8 farge (blå) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2farger (blå) (= (- 14 + 3isqrt (6)) / 2) b) 2 * a / b = isqrt (6)) / 2) / ((2-isqrt (6)) / 2) = (2 + isqr
Hva er domenet til den kombinerte funksjonen h (x) = f (x) - g (x) hvis domenet til f (x) = (4,4,5] og domenet til g (x) er [4, 4,5 )?
Domenet er D_ {f-g} = (4,4,5). Se forklaring. (f-g) (x) kan bare beregnes for de x, for hvilke både f og g er definert. Så vi kan skrive det: D_ {f-g} = D_fnnD_g Her har vi D_ {f-g} = (4,4,5] nn [4,4,5) = (4,4,5)
Hvis f (x) = 3x ^ 2 og g (x) = (x-9) / (x + 1), og x! = - 1, hva vil f (g (x)) være lik? g (f (x))? f ^ -1 (x)? Hva ville domenet, rekkevidden og nullene for f (x) være? Hva ville domenet, rekkevidden og nullene for g (x) være?
F (g (x)) = 3 (x-9) / (x + 1)) 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) 1 (x) = rot () (x / 3) D_f = {x i RR}, R_f = {f (x) i RR; f (x)> = 0} D_g = {x i RR; x! = - 1}, R_g = {g (x) i RR; g (x)! = 1}