Vi må bruke trig identiteten:
Ved å bruke dette får vi:
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er litt forvirret hvis jeg gjør Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), det blir negativt som cos (180 ° -teta) = - costheta in den andre kvadranten. Hvordan går jeg med å bevise spørsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hvordan viser du at sqrt (3) cos (x + pi / 6) - cos (x + pi / 3) = cos (x) -sqrt3sinx?
LHS = sqrt3cos (x + pi / 6) -kos (x-pi / 3) = sqrt3 [cosx * cos (pi / 6) -sinx * sin (pi / 6)] - [cosx * cos (pi / 3) -sinx * sin (pi / 3)] = sqrt3 [cosx * (sqrt3 / 2) -sinx * (1/2)] - [cosx * (1/2) -sinx * (sqrt3 / 2)] = (3cosx -sqrt3sinx) / 2- (cosx-sqrt3sinx) / 2 = (3cosx-sqrt3sinx-cosx + sqrt3sinx) / 2 = (2cosx) / 2 = cosx = RHS
Hvordan graver du og viser amplituden, perioden, faseskiftet for y = cos (-3x)?
Funksjonen vil ha en amplitude på 1, en faseskift på 0 og en periode på (2pi) / 3. Grafering av funksjonen er like enkelt som å bestemme de tre egenskapene, og deretter vekker standard cos (x) grafen for å matche. Her er en utvidet måte å se på en generelt skiftet cos (x) -funksjon: acos (bx + c) + d Standardverdiene for variablene er: a = b = 1 c = d = 0 Det skal være åpenbart at disse verdiene helt enkelt vil være de samme som å skrive cos (x).La oss nå undersøke hva som endres hver ville gjøre: a - endre dette ville endre amplituden til funksjone