
Svar:
Sammensatt interesse
Enkel interesse
Forklaring:
Sluttår 1
Sluttår 2
Med andre ord virker det ut økningen, inkludert alle andre økninger
Bruk av sammensatt interesse type ligning
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enkel interesse på første pris er
Pris etter 5 år:
Familien Diaz kjøpte et hus for 225.000 dollar. Hvis verdien av huset øker med en sats på 5% per år, om hvor mye vil huset være verdt i 8 år?

= 332325 $ 225000 (1 + 0,05) ^ 8 = 225000 (1,05) ^ 8 = 225000times1,477 = 332325 $
Verdien av en smussykkel reduseres med 30% hvert år. Hvis du kjøpte denne skittløypen i dag for $ 500, til nærmeste dollar, hvor mye ville sykkelen være verdt 5 år senere?

Omtrent $ 84,04 Redusere med 30% er det samme som å ta 70% av forrige pris. Så prisen starter ved 500 og blir multiplisert med 0,7 (fordi det er 70% som desimal) fem ganger (for hvert år). Så: 500 (0,7) (0,7) (0,7) (0,7) (0,7) = 500 (0,7) ^ 5 = 500 (0,16807) = 84,035 Så ca $ 84,04 Du kan generelt modellere eksponensiell forfall / vekst ved å bruke ligningen: y = ab ^ x hvor a = begynnelsesbeløp, b = vekstfaktor (1 pluss prosentvis som desimal) eller forfallsfaktor (1 minus prosentandelen som desimal) x = tid og y = sluttbeløp etter vekst / henfall I ditt problem a = 500, b = 0,7, x =
En kvinne på sykkel akselererer fra hvile med konstant hastighet i 10 sekunder, til sykkelen beveger seg ved 20m / s. Hun opprettholder denne hastigheten i 30 sekunder, og bruker bremsene til å decelerere med konstant hastighet. Sykkelen kommer til et stopp 5 sekunder senere.hjelp?

Del a) akselerasjon "a = -4 m / s ^ 2" Del b) Total tilbakestilt avstand er "750 mv = v_0 + ved" Del a) I de siste 5 sekunder har vi: "0 = 20 + 5 a = > a = -4 m / s ^ 2 "del b)" "I de første 10 sekundene har vi:" 20 = 0 + 10 a => a = 2 m / s ^ 2 x = v_0 t + ved ^ 2 / 2 => x = 0 t + 2 * 10 ^ 2/2 = 100 m "I de neste 30 sekundene har vi konstant hastighet:" x = vt => x = 20 * 30 = 600 m " har: "x = 20 * 5 - 4 * 5 ^ 2/2 = 50 m =>" Total avstand "x = 100 + 600 + 50 = 750 m" Bemerkning: "" 20 m / s = 72 km / Det er veldi