Svar:
Det er en mulig tredje side av rundt
Hvis sidelengden
Forklaring:
Dette er kanskje et vanskeligere problem enn det først vises. Noen vet hvordan du finner den tredje siden, som vi synes å trenge for dette problemet? Normal trig vanlig gjør oss til å beregne vinklene, noe som gjør en tilnærming der ingen er nødvendig.
Det læres ikke virkelig i skolen, men den enkleste måten er Archimedes 'Theorem, en moderne form for Herons teorem. La oss ringe A's område
Vi har
Det er to forskjellige verdier for
For maksimalareal, maksimal skalering, betyr det at den minste side skaleres til
For minimal område er den største siden skalert til
Triangle A har et område på 15 og to sider med lengder 8 og 7. Trekant B er lik trekant A og har en side med en lengde på 16. Hva er de maksimale og minste mulige områdene av trekanten B?
Maksimal del av Delta B = 78.3673 Minimumsareal av Delta B = 48 Delta s A og B er like. For å få maksimal del av Delta B, må side 16 av Delta B svare til side 7 av Delta A. Sidene er i forholdet 16: 7 Derfor vil områdene være i forholdet 16 ^ 2: 7 ^ 2 = 256: 49 Maksimalt trekantområde B = (15 * 256) / 49 = 78.3673 På samme måte som minimumsområdet, vil side 8 av Delta A svare til side 16 av Delta B. Sidene er i forholdet 16: 8 og områder 256: 64 Minimumsareal av Delta B = (12 * 256) / 64 = 48
Triangle A har et område på 15 og to sider med lengder 8 og 7. Trekant B er lik trekant A og har en side med en lengde på 14. Hva er de maksimale og minste mulige områdene av trekanten B?
Maksimalt mulig trekantområde B = 60 Minimum mulig område av trekant B = 45.9375 Delta s A og B er like. For å få maksimalt område av Delta B, må side 14 av Delta B svare til side 7 av Delta A. Sidene er i forholdet 14: 7 Derfor vil områdene være i forholdet 14 ^ 2: 7 ^ 2 = 196: 49 Maksimalt trekantområde B = (15 * 196) / 49 = 60 På samme måte som minimumsområdet, vil side 8 av Delta A svare til side 14 av Delta B. Sidene er i forholdet 14: 8 og områder 196: 64 Minimumsareal av Delta B = (15 * 196) / 64 = 45,9375
Triangle A har et område på 4 og to sider med lengder 8 og 4. Trekant B er lik trekant A og har en side med en lengde på 13. Hva er de maksimale og minste mulige områdene av trekanten B?
"Maks" = 169/40 (5 + sqrt15) ~~ 37.488 "Min" = 169/40 (5 - sqrt15) ~~ 4.762 La hjørnene av trekanten A være merket P, Q, R, med PQ = 8 og QR = 4. Ved hjelp av Herons formel, "Areal" = sqrt {S (S-PQ) (S-QR) (S-PR)}, hvor S = {PQ + QR + PR} / 2 er halvkantet S = {8 + 4 + PR} / 2 = {12 + PR} / 2 Således er sqrt {S (S-PQ) (S-QR) (S-PR)} = sqrt {({12 + PQ} / {2 + PQ} / 2-8) ({12 + PQ} / 2-4) ({12 + PQ} / 2-PQ)} = sqrt {(12 + PQ) (PQ-4) (4 + PQ) (12 - PQ)} / 4 = "Areal" = 4 Løs for C. sqrt {(144 - PQ ^ 2) (PQ ^ 2-16)} = 16 (PQ ^ 2-144) PQ ^ 2 - 16) = -256 PQ ^ 4 - 160 P