Svar:
Se en løsningsprosess under:
Forklaring:
Utvalget er utgangen av en funksjon. For å finne domenet, inngangen til en funksjon, må vi finne verdien av
Til
Til
Til
Til
Domene er:
Domenet til f (x) er settet av alle reelle verdier bortsett fra 7, og domenet til g (x) er settet av alle reelle verdier bortsett fra -3. Hva er domenet til (g * f) (x)?
Alle reelle tall unntatt 7 og -3 når du multipliserer to funksjoner, hva gjør vi? vi tar f (x) -verdien og multipliserer den med g (x) -verdien, hvor x må være det samme. Begge funksjonene har imidlertid begrensninger, 7 og -3, så produktet av de to funksjonene må ha * begge * begrensninger. Vanligvis når de har operasjoner på funksjoner, hvis de forrige funksjonene (f (x) og g (x)) hadde begrensninger, blir de alltid tatt som en del av den nye begrensningen av den nye funksjonen, eller deres drift. Du kan også visualisere dette ved å lage to rasjonelle funksjoner med forsk
La domenet til f (x) være [-2.3] og området skal være [0,6]. Hva er domenet og rekkevidden av f (-x)?
Domenet er intervallet [-3, 2]. Området er intervallet [0, 6]. Nøyaktig som det er, dette er ikke en funksjon, siden domenet er bare tallet -2.3, mens rekkevidden er et intervall. Men forutsatt at dette bare er en skrivefeil, og det faktiske domenet er intervallet [-2, 3], er dette som følger: La g (x) = f (-x). Siden f krever at den uavhengige variabelen bare tar verdier i intervallet [-2, 3], må -x (negativ x) være innenfor [-3, 2], som er domenet til g. Siden g får sin verdi gjennom funksjonen f, forblir dens rekkevidde det samme, uansett hva vi bruker som den uavhengige variabelen.
Hvis f (x) = 3x ^ 2 og g (x) = (x-9) / (x + 1), og x! = - 1, hva vil f (g (x)) være lik? g (f (x))? f ^ -1 (x)? Hva ville domenet, rekkevidden og nullene for f (x) være? Hva ville domenet, rekkevidden og nullene for g (x) være?
F (g (x)) = 3 (x-9) / (x + 1)) 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) 1 (x) = rot () (x / 3) D_f = {x i RR}, R_f = {f (x) i RR; f (x)> = 0} D_g = {x i RR; x! = - 1}, R_g = {g (x) i RR; g (x)! = 1}