Svar:
Det første nummeret er
Forklaring:
La oss la det første nummeret være
Så fra første setning kan vi skrive:
og fra den andre setningen kan vi skrive:
Erstatning
Nå erstattet
Summen av tre tall er 4. Hvis den første blir doblet og den tredje er tredoblet, er summen to mindre enn den andre. Fire mer enn den første legges til den tredje er to flere enn den andre. Finn tallene?
1 = 2, 2 = 3, 3 = -1 Opprett de tre ligningene: La 1. = x, 2. = y og 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Eliminer variabelen y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Løs for x ved å eliminere variabelen z ved å multiplisere EQ. 1 + EQ. 3 ved -2 og legger til EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Løs for z ved å sette x inn i EQ. 2 og EQ. 3: EQ. 2 med x: "" 4 - y
Ett tall er 6 mindre enn et andre nummer. To ganger er det andre nummeret 25 mer enn 3 ganger det første. Hvordan finner du de to tallene?
X = -13 La x være det første tallet, så x + 6 er det andre tallet 3x + 25 = 2 (x + 6) 3x + 25 = 2x + 12 x = -13
Ett tall er fire mindre enn et andre nummer. To ganger er den første 15 mer enn 3 ganger den andre. Hvordan finner du tallene?
De to tallene er -23 og -27 Vi må først skrive dette problemet i form av ligning og deretter løse de samtidige ligningene. La oss kalle tallene vi leter etter n og m. Vi kan skrive den første setningen som en ligning som: n = m - 4 Og den andre setningen kan skrives som: 2n = 3m + 15 Nå kan vi erstatte m - 4 i den andre ligningen for n og løse for m; 2 (m - 4) = 3m + 15 2m - 8 = 3m + 15 2m - 2m - 8 - 15 = 3m - 2m + 15 - 15 - 8 - 15 = 3m - 2m -23 = m Vi kan nå erstatte -23 for m i den første ligningen og beregne n: n = -23 - 4 n = -27