Svar:
Forklaring:
Perioden for både sin kt og cos kt er
Så, hver for seg er perioder av de to termene i f (t)
For summen er den sammensatte perioden gitt av
L = 13 og M = 1. Den vanlige verdien =
Kryss av:
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er litt forvirret hvis jeg gjør Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), det blir negativt som cos (180 ° -teta) = - costheta in den andre kvadranten. Hvordan går jeg med å bevise spørsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hva er perioden f (t) = sin (t / 13) + cos ((13t) / 24)?
Perioden er = 4056pi Perioden T for en periodisk funkton er slik at f (t) = f (t + T) Her, f (t) = sin (1 / 13t) + cos (13 / 24t) t + T) = sin (1/13 (t + T)) + cos (13/24 (t + T)) = synd (1 / 13t + 1 / 13T) + cos (13 / 24t + 13 / 24T) = sin (1 / 13t) cos (1 / 13T) + cos (1 / 13t) sin (1 / 13T) + cos (13 / 24T) cos (13 / 24T) -sin (13 / 24T) sin (13 / 24T) Som f (t) = f (t + T) {(cos (1 / 13T) = 1), (sin (1 / 13T) = 0), (cos (13 / 24T) = 1) (13 / 24T = 2pi):} <=>, {(T = 26pi = 338pi), (T = 48) / 13pi = 48pi):} <=>, T = 4056pi
Hvordan verifiserer du [sin ^ 3 (B) + cos ^ 3 (B)] / [sin (B) + cos (B)] = 1-sin (B) cos (B)?
Bevis under utvidelse av ^ 3 + b ^ 3 = (a + b) (a ^ 2-ab + b ^ 2), og vi kan bruke dette: (sin ^ 3B + cos ^ 3B) / (sinB + cosB) = sinBcosB + cos ^ 2B = sin ^ 2B + cos ^ 2B-sinBcosB (identitet: sin ^^ sinBcosB + cos ^ 2B)) / (sinB + cosB) = sin ^ 2B-sinBcosB + 2x + cos ^ 2x = 1) = 1-sinBcosB