En rektangulær plen er 24 fot bred med 32 meter lang. En fortau skal bygges langs innsiden av alle fire sider. Den gjenværende plenen vil ha et areal på 425 kvadratmeter. Hvor bredt går turen?

En rektangulær plen er 24 fot bred med 32 meter lang. En fortau skal bygges langs innsiden av alle fire sider. Den gjenværende plenen vil ha et areal på 425 kvadratmeter. Hvor bredt går turen?
Anonim

Svar:

# "width" = "3.5 m" #

Forklaring:

Ta bredden på sidegangen som # X #, slik at lengden på den gjenværende plenen blir

#l = 32 - 2x #

og bredden av plenen blir

#w = 24 - 2x #

Plassen av plenen er

#A = 1 * w = (32-2x) * (24-2x) = 4x ^ 2 -112x + 768 #

Dette er lik # "425 ft" ^ 2 -> # gitt

Dette betyr at du har

# 4x ^ 2 - 112x + 768 = 425 #

# 4x ^ 2 - 112x + 343 = 0 #

Dette er en kvadratisk ligning, og du kan løse den ved hjelp av kvadratisk formel

# x_ (1,2) = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a) "" #, hvor

#en# er koeffisienten til # x ^ 2 -> # #4# i dette tilfellet

# B # er koeffisienten til #x -> # #-112# i dette tilfellet

# C # er konstanten #-> 343# i dette tilfellet

Ut av de to verdiene du får for # X #, en vil være absurd. Kast den bort og vurder den andre.

#x_ (1,2) = (- (- 112) + - sqrt (7056)) / (2 * 4) #

# x_ (1,2) = (112 + - 84) / 8 = {(farge (rød) (avbryt (farge (svart) (x_1 = 24,5)))) (x_2 = 3,5):}

Tavlen av fortauet vil således være

#x = "3,5 m" #