Svar:
Forklaring:
For en gitt funksjon
Funksjonen f er slik at f (x) = a ^ 2x ^ 2-ax + 3b for x <1 / (2a) Hvor a og b er konstant for tilfellet der a = 1 og b = -1 Finn f ^ - 1 (cf og finn domenet jeg kjenner domenet til f ^ -1 (x) = rekkevidde av f (x) og det er -13/4, men jeg vet ikke ulik signaturretning?
Se nedenfor. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Område: Sett inn form y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimumsverdi -13/4 Dette skjer ved x = 1/2 Så rekkevidde er 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Bruke kvadratisk formel: y = (- (- 1) + -sqrt ((1) ^ 2-4 (1) (-3-x))) / 2y = (1 + -sqrt (4x + 13)) / 2f ^ (- 1) (x) = 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Med en liten tanke kan vi se at for domenet har vi den nødvendige inverse : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Med domene: (-13 / 4, oo) Merk at vi ha
La f være en kontinuerlig funksjon: a) Finn f (4) hvis _0 ^ (x ^ 2) f (t) dt = x sin πx for alle x. b) Finn f (4) hvis _0 ^ f (x) t ^ 2 dt = x sin πx for alle x?
A) f (4) = pi / 2; b) f (4) = 0 a) Differensier begge sider. Gjennom den andre grunnleggende teoremet av beregninger på venstre side og produkt- og kjedebestemmelsene på høyre side ser vi at differensiering avslører at: f (x ^ 2) * 2x = sin (pix) + pixcos (pix) ) Å la x = 2 viser at f (4) * 4 = sin (2pi) + 2picos (2pi) f (4) * 4 = 0 + 2pi * 1 f (4) = pi / 2 b) Integrer interiørperioden. int_0 ^ f (x) t ^ 2dt = xsin (pix) [t ^ 3/3] _0 ^ f (x) = xsin (pix) Evaluere. (f (x)) ^ 3 / 3-0 ^ 3/3 = xsin (pix) (f (x)) ^ 3/3 = xsin (piksel) (f (x)) ^ 3 = 3xsin x = 4. (f (4)) ^ 3 = 3 (4) sin (4pi) (f (4))