Svar:
Forklaring:
# "ligningen til en parabola i" farge (blå) "vertex form" # er.
#COLOR (red) (bar (ul (| farge (hvit) (2/2) farge (sort) (y = a (x-h) ^ 2 + k) farge (hvit) (2/2) |))) #
# "hvor" (h, k) "er koordinatene til toppunktet og en" # "
# "er en multiplikator" #
# "for å få dette skjemaet bruk metoden for" farge (blå) "å fullføre kvadratet" # #
# • "koeffisienten til" x ^ 2 "termen må være 1" #
# RArry = 3 (x ^ 2-14 / 3x-10/3) #
# • "add / subtract" (1/2 "koeffisient av x-term") ^ 2 "til" #
# X ^ 2-14 / 3x #
# RArry = 3 (x ^ 2 + 2 (-7/3) Xcolor (red) (+ 49/9) farge (rød) (- 49/9) -10/3) #
#COLOR (hvit) (rArry) = 3 (X-7/3) ^ 2 + 3 (-49 / 9-10 / 3) #
#color (hvit) (rArry) = 3 (x-7/3) ^ 2-79 / 3larrcolor (rød) "i vertex form" #
Vertexformen til likningen av en parabola er x = (y - 3) ^ 2 + 41, hva er standardformen til ligningen?
Y = + - sqrt (x-41) +3 Vi må løse for y. Når vi har gjort det, kan vi manipulere resten av problemet (hvis vi trenger) for å endre det til standardformular: x = (y-3) ^ 2 + 41 trekke 41 på begge sider x-41 = (y -3) ^ 2 ta kvadratroten på begge sider farge (rød) (+ -) sqrt (x-41) = y-3 legg til 3 på begge sider y = + - sqrt (x-41) +3 eller y = 3 + -sqrt (x-41) Standardformen for Square Root-funksjonene er y = + - sqrt (x) + h, så vårt endelige svar skal være y = + - sqrt (x-41) +3
Vertexformen av ligningen til en parabol er y = 4 (x-2) ^ 2 -1. Hva er standardformen til ligningen?
Y = 4x ^ 2-16x + 15> "ligningen i en parabol i standardform er" farge (hvit) (x) y = ax ^ 2 + bx + cto (a! = 0) "utvide faktorene og forenkle (y) = 4x ^ 2-16x + 15
Vertexformen til ligningen til en parabola er y + 10 = 3 (x-1) ^ 2 hva er standardformen til ligningen?
Y = 3x ^ 2-6x-7 Forenkle den gitte ligningen som y + 10 = 3 (x ^ 2 -2x +1) Derfor y = 3x ^ 2x6 + 3-10 Eller y = 3x ^ 2-6x- 7, som er den nødvendige standardformularen.