Svar:
Det er
Forklaring:
Vi ser etter perioden som er enklere, da vet vi at frekvensen er omvendt av perioden.
Vi vet at perioden for begge deler
Så kan vi si det
Med den samme ideen finner vi det
Forskjellen mellom de to repetisjonene når begge mengdene gjentar.
Etter
Så funksjonen har periode
graf {sin (6x) -koser (2x) -0.582, 4.283, -1.951, 0.478}
Bevis: - synd (7 theta) + synd (5 theta) / synd (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2x (5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Hva er ligningen av tangentlinjen til r = tan ^ 2 (theta) - sin (theta-pi) ved theta = pi / 4?
R = (2 + sqrt2) / 2r = tan ^ 2 tetanin (theta-pi) ved pi / 4r = tan ^ 2 (pi / 4) - sin (pi / 4 -pi) r = 1 ^ 2 - synd ((- 3pi) / 4) r = 1-sin ((5pi) / 4) r = 1 - (- sqrt2 / 2) r = 1 + sqrt2 / 2 r = (2 + sqrt2) / 2
Hvordan uttrykker du f (theta) = sin ^ 2 (theta) + 3cot ^ 2 (theta) -3csc ^ 2theta i form av ikke-eksponensielle trigonometriske funksjoner?
Se nedenfor f (theta) = 3sin ^ 2teta + 3cot ^ 2ta-3csc ^ 2theta = 3sin ^ 2ta + 3cot ^ 2ta-3csc ^ 2theta = 3sin ^ 2ta + 3 (csc ^ 2theta-1) -3csc ^ 2eta = 3sin ^ 2theta + avbryt (3csc ^ 2theta) -cancel3csc ^ 2theta-3 = 3sin ^ 2theta-3 = -3 (1-sin ^ 2theta) = -3cos ^ 2theta