Når en gjenstand kastes horisontalt fra konstant høyde
så,
Så, vi kan se dette uttrykket er uavhengig av innledende hastighet
nå, hvis det gikk opp til
Så vi kan se, fra det ovennevnte uttrykket at,
Så på tripling
Jacks høyde er 2/3 av Leslie høyde. Leslie høyde er 3/4 av Lindsay høyde. Hvis Lindsay er 160 cm høy, finn Jacks høyde og Leslie høyde?
Leslie er = 120cm og Jacks høyde = 80cm Leslie er høyde = 3 / avbryt4 ^ 1xxcancel160 ^ 40/1 = 120cm Jacks height = 2 / cancel3 ^ 1xxcancel120 ^ 40/1 = 80cm
Et fly som flyr horisontalt i en høyde på 1 mi og en hastighet på 500 mi / t passerer rett over en radarstasjon. Hvordan finner du hastigheten hvor avstanden fra flyet til stasjonen øker når det er 2 miles unna stasjonen?
Når flyet ligger 2mi unna radarstasjonen, er avstandens økningshastighet ca 433 m / h. Følgende bilde representerer vårt problem: P er flyets posisjon R er radarstasjonens posisjon V er punktet plassert vertikalt av radarstasjonen ved flyets høyde h er flyets høyde d er avstanden mellom flyet og radarstasjonen x er Avstanden mellom flyet og V-punktet Siden flyet flyr horisontalt, kan vi konkludere med at PVR er en riktig trekant. Derfor tillater pythagorasetningen oss å vite at d er beregnet: d = sqrt (h ^ 2 + x ^ 2) Vi er interessert i situasjonen når d = 2mi, og siden flyet flyr ho
Kraften som påføres mot et objekt som beveger seg horisontalt på en lineær bane, er beskrevet av F (x) = x ^ 2-3x + 3. Ved hvor mye endrer objektets kinetiske energi når objektet beveger seg fra x i [0, 1]?
Newtons andre lov om bevegelse: F = m * a Definisjoner av akselerasjon og hastighet: a = (du) / dt u = (dx) / dt Kinetisk energi: K = m * u ^ 2/2 Svar er: ΔK = 11 / 6 kg * m ^ 2 / s ^ 2 Newtons andre lov om bevegelse: F = m * ax ^ 2-3x + 3 = m * a Ved å erstatte a = (du) / dt hjelper ikke ligningen, siden F ern ' t gitt som en funksjon av t men som en funksjon av x Men: a = (du) / dt = (du) / dt * (dx) / dx = (dx) / dt * (du) / dx Men (dx) / dt = u slik: a = (dx) / dt * (du) / dx = u * (du) / dx Ved å sette inn i ligningen vi har, har vi en differensialligning: x ^ 2-3x + 3 = m * u (du) / dx (x ^ 2-3x + 3) dx