Svar:
Forklaring:
Bare for helvete av det La oss gå mot hva andre mennesker ville gjøre og unngå å bruke brevet
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
La den første delen bli representert av
La den andre delen være representert av
Det gis at den andre delen er 3 ganger større enn den andre. Så skriver vi:
Vi blir fortalt det
Men det vet vi også
Del begge sider med 4
Så vi har
Summen av tre tall er 4. Hvis den første blir doblet og den tredje er tredoblet, er summen to mindre enn den andre. Fire mer enn den første legges til den tredje er to flere enn den andre. Finn tallene?
1 = 2, 2 = 3, 3 = -1 Opprett de tre ligningene: La 1. = x, 2. = y og 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Eliminer variabelen y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Løs for x ved å eliminere variabelen z ved å multiplisere EQ. 1 + EQ. 3 ved -2 og legger til EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Løs for z ved å sette x inn i EQ. 2 og EQ. 3: EQ. 2 med x: "" 4 - y
Summen av tre tall er 137. Det andre tallet er fire mer enn, to ganger det første nummeret. Det tredje nummeret er fem mindre enn tre ganger det første nummeret. Hvordan finner du de tre tallene?
Tallene er 23, 50 og 64. Begynn med å skrive et uttrykk for hvert av de tre tallene. De er alle dannet fra det første nummeret, så la oss ringe det første tallet x. La det første tallet være x Det andre nummeret er 2x +4 Det tredje nummeret er 3x -5 Vi får beskjed om at summen er 137. Dette betyr at når vi legger til dem alle sammen, blir svaret 137. Skriv en ligning. (x) + (2x + 4) + (3x - 5) = 137 Brakettene er ikke nødvendige, de er inkludert for klarhet. 6x -1 = 137 6x = 138 x = 23 Så snart vi kjenner det første nummeret, kan vi trene de andre to fra uttrykkene vi
To ganger et tall pluss tre ganger et annet tall er lik 4. Tre ganger det første tallet pluss fire ganger det andre tallet er 7. Hva er tallene?
Det første tallet er 5 og det andre er -2. La x være det første nummeret og y være det andre. Da har vi {(2x + 3y = 4), (3x + 4y = 7):} Vi kan bruke en hvilken som helst metode for å løse dette systemet. For eksempel, ved eliminering: For det første eliminerer x ved å subtrahere et flertall av den andre ligningen fra den første, 2x + 3y- 2/3 (3x + 4y) = 4 - 2/3 (7) => 1 / 3y = - 2/3 => y = -2 og deretter erstatte det resultatet tilbake til den første ligningen, 2x + 3 (-2) = 4 => 2x - 6 = 4 => 2x = 10 => x = 5 Dermed er det første nummeret 5 og den andre