Svar:
hypotenusen
Forklaring:
La det kjente benet være
Bare positive løsninger er tillatt
Hypotenusen til en riktig trekant er 39 inches, og lengden på ett ben er 6 inches lengre enn to ganger det andre benet. Hvordan finner du lengden på hvert ben?
Benene er av lengde 15 og 36 Metode 1 - Kjente trekanter De første rettvinklede trekanter med ulik lengde side er: 3, 4, 5 5, 12, 13 7, 24, 25 Legg merke til at 39 = 3 * 13, så Vil en trekant med følgende sider fungere: 15, 36, 39 dvs. 3 ganger større enn en 5, 12, 13 trekant? To ganger 15 er 30, pluss 6 er 36 - Ja. farge (hvit) () Metode 2 - Pythagoras formel og litt algebra Hvis det mindre benet er lengde x, er det større beinet av lengde 2x + 6 og hypotenusen er: 39 = sqrt (x ^ 2 + (2x + 6) ^ 2) farge (hvit) (39) = sqrt (5x ^ 2 + 24x + 36) Firkant begge endene for å få: 1521 = 5x ^ 2 +
Lengre ben av en riktig trekant er 3 tommer mer enn 3 ganger lengden på det kortere benet. Arealet av trekanten er 84 kvadrattommer. Hvordan finner du omkretsen av en riktig trekant?
P = 56 kvadrattommer. Se figur nedenfor for bedre forståelse. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Løsning av kvadratisk ligning: b_1 = 7 b_2 = -8 (umulig) Så, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 kvadrat inches
Ett ben av en riktig trekant er 96 tommer. Hvordan finner du hypotenus og det andre benet hvis hypotenusens lengde overstiger 2,5 ganger det andre benet med 4 tommer?
Bruk Pythagoras til å etablere x = 40 og h = 104 La x være det andre benet, så hypotenuse h = 5 / 2x +4 Og vi får beskjed om det første benet y = 96 Vi kan bruke Pythagoras ekvation x ^ 2 + y ^ 2 = 2x2 + 4x + 2x + 4 ^ 2x ^ 2 + 9216 = 25x ^ 2/4 + 20x +16 Reordering gir oss x ^ 2 - 25x ^ 2/4 - 20x +9200 = 0 Multiplikeres gjennom -4 21x ^ 2 + 80x -36800 = 0 Ved å bruke den kvadratiske formelen x = (-b + -sqrt (b ^ 2- 4ac)) / (2a) x = (- (80) + - sqrt (6400 + 3091200)) / (- 42) x = (-80 + -1760) / 42 så x = 40 eller x = -1840/42 Vi kan ignorere det negative svaret da vi reagerer på en ek