Hvis den minste av de to påfølgende like heltallene er
da blir vi fortalt,
Så
Siden
de to påfølgende like heltallene er
Produktet av to påfølgende like heltall er 24. Finn de to heltallene. Svar i form av parrede punkter med det laveste av de to heltallene først. Svar?
De to påfølgende like heltallene: (4,6) eller (-6, -4) La, farge (rød) (n og n-2 være de to påfølgende like heltallene, hvor farge (rød) (n inZZ Produkt av n og n-2 er 24 dvs. n (n-2) = 24 => n ^ 2-2n-24 = 0 Nå, [(-6) + 4 = -2 og (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 eller n + 4 = 0 ... til [n inZZ] => farge (rød) (n = 6 eller n = -4 (i) farge (rød) (n = 6) => farge (rød) = 6-2 = farge (rød) (4) Så de to fortgående like heltallene: (4,6) (ii)) farge (rød) (n = -4) => farge (rød)
Det er tre fortløpende heltall. hvis summen av reciprocals av andre og tredje heltall er (7/12), hva er de tre heltallene?
2, 3, 4 La n være det første heltallet. Da er de tre fortløpende heltallene: n, n + 1, n + 2 Sum av reciprocals av 2. og 3.: 1 / (n + 1) + 1 / (n + 2) = 7/12 Legg til fraksjonene: n + 2) + (n + 1)) / ((n + 1) (n + 2)) = 7/12 Multipliser med 12: (12 ((n + 2) + (n + 1) (n + 2)) = 7 Multipliser med (n + 1) (n + 2)) (12 ((n + 2) + (n + 1))) = 7 ) (n + 2)) Utvidelse: 12n + 24 + 12n + 12 = 7n ^ 2 + 21n + 14 Samler like vilkår og forenkling: 7n ^ 2-3n-22 = 0 Faktor: (7n + 11) (n-2 ) = 0 => n = -11 / 7 og n = 2 Bare n = 2 er gyldig siden vi trenger hele tall. Så tallene er: 2, 3, 4
Tripling det største av to påfølgende like heltall gir samme resultat som å trekke 10 fra det mindre like heltallet. Hva er heltallene?
Jeg fant -8 og -6 Ringe hele tallene dine: 2n og 2n + 2 du har: 3 (2n + 2) = 2n-10 omarrangering: 6n + 6 = 2n-10nn-2n = -6-10 4n = -16 n = -16 / 4 = -4 Så heltalene skal være: 2n = 2 (-4) = - 8 2n + 2 = 2 (-4) + 2 = -6