Svar:
Vinkelrett betyr en negativ gjensidig helling av
Forklaring:
Sjekk: Linjene er vinkelrette ved inspeksjon.
Linje n passerer gjennom punkter (6,5) og (0, 1). Hva er y-avsnittet av linje k, hvis linje k er vinkelrett på linje n og går gjennom punktet (2,4)?
7 er y-avskjæringen av linjen k Først, la oss finne skråningen for linje n. (1-5) / (0-6) (-4) / - 6 2/3 = m Hellingen av linje n er 2/3. Det betyr at helling av linje k, som er vinkelrett på linje n, er den negative gjensidige av 2/3 eller -3/2. Så ligningen vi har så langt er: y = (- 3/2) x + b For å beregne b eller y-avskjermet, bare plugg inn (2,4) i ligningen. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Så y-avskjæringen er 7
Hva er ligningen av linjen som går gjennom (0, -1) og er vinkelrett på linjen som går gjennom følgende punkter: (8, -3), (1,0)?
7x-3y + 1 = 0 Helling av linjen som knytter seg til to punkter (x_1, y_1) og (x_2, y_2) er gitt av (y_2-y_1) / (x_2-x_1) eller (y_1-y_2) / (x_1-x_2) ) Som poengene er (8, -3) og (1, 0), vil linjens lutning bli gitt av (0 - (- 3)) / (1-8) eller (3) / (- 7) det vil si -3/7. Produkt av helling av to vinkelrette linjer er alltid -1. Derfor vil lutningen av linjen vinkelrett på den være 7/3, og derfor kan ligning i skråform bli skrevet som y = 7 / 3x + c Når dette går gjennom punktet (0, -1), legger du disse verdiene i over ligningen -1 = 7/3 * 0 + c eller c = 1 Derfor vil ønsket ligning være
Bevis at gitt en linje og peker ikke på den linjen, er det akkurat en linje som går gjennom det punktet vinkelrett gjennom den linjen? Du kan gjøre dette matematisk eller gjennom bygging (de gamle grekerne gjorde)?
Se nedenfor. La oss anta at den gitte linjen er AB, og poenget er P, som ikke er på AB. Nå, la oss anta at vi har tegnet en vinkelret PO på AB. Vi må bevise at denne PO er den eneste linjen som går gjennom P som er vinkelrett på AB. Nå skal vi bruke en konstruksjon. La oss konstruere en annen vinkelrett PC på AB fra punkt P. Nå beviset. Vi har, OP vinkelrett AB [Jeg kan ikke bruke vinkelrett tegn, hvordan annyoing] Og, også PC vinkelrett AB. Så, OP || PC. [Begge er perpendiculars på samme linje.] Nå har både OP og PC punkt P felles og de er parallelle. D