Svar:
Eksisterer ikke.
Forklaring:
Som
Verdien kan ikke nærme seg et enkelt begrensningsnummer og
Her er en graf som hjelper til med å forstå dette mer
graf {e ^ xsin (1 / x) -4.164, 4.604, -1.91, 2.473}
Hva er lik? lim_ (x-> pi / 2) sin (cosx) / (cos ^ 2 (x / 2) -sin ^ 2 (x / 2)) =?
1 "Merk at:" farge (rød) (cos ^ 2 (x) -sin ^ 2 (x) = cos (2x)) "Så her har vi" lim_ {x-> pi / 2} sin )) / cos (x) "Nå gjelder regel de l 'Hôptial:" = lim_ {x-> pi / 2} cos (cos (x)) * (- sin (x)) / = lim_ {x-> pi / 2} cos (cos (x)) = cos (cos (pi / 2)) = cos (0) = 1
Hva er verdien av? lim_ (x-> 0) (int_0 ^ x sin t ^ 2.dt) / sin x ^ 2
Lim_ (x rarr 0) (int_0 ^ x sin t ^ 2 dt) / (sin x ^ 2) = 0 Vi søker: L = lim_ (x rarr 0) (int_0 ^ x sin t ^ 2 dt) / ^ 2) Både telleren og2nevneren rarr 0 som x rarr 0. Derfor er grensen L (hvis den eksisterer) av ubestemt form 0/0, og derfor kan vi anvende L'Hôpital's regel for å få: L = lim_ (xrarr 0) (d / dx int_0 ^ x sin (t ^ 2) dt) / (d / dx sin (x ^ 2)) = lim_ (x rarr 0) (d / dx int_0 ^ x sin t ^ 2) dt) / (d / dx sin (x ^ 2)) Nå bruker du grunnleggende teorem av kalkulatoren: d / dx int_0 ^ x sin (t ^ 2) dt = sin (x ^ 2) Og d / dx sin (x ^ 2) = 2xcos (x ^ 2) Og så: L = lim_
Hva er lim_ (xrarroo) (e ^ (2x) sin (1 / x)) / x ^ 2?
Lim_ (x-> oo) (e ^ (2x) sin (1 / x)) / x ^ 2 = oo La y = (e ^ (2x) sin (1 / x)) / x ^ 2 lny = ln (1x) sin (1x)) / x ^ 2) lny = lne ^ (2x) + ln (sin (1 / x)) - lnx ^ 2 lny = 2xlne + ln (sin ) - 2lnx lny = 2x + ln (sin (1 / x)) - 2lnx lim_ (x-> oo) [lny = 2x + ln (sin (1 / x)) - 2lnx] lim_ (x-> oo) lny = lim_ (x-> oo) [2x + ln (sin (1 / x)) - 2lnx] lim_ (x-> oo) lny = oo e ^ lny = e ^ oo y = oo