Svar:
Ett svar kommer ut til å være negativt og lengden kan aldri være
Forklaring:
La
La
Så
Lengden på et rektangel overstiger bredden ved 4 cm. Hvis lengden økes med 3 cm og bredden økes med 2 cm, overstiger det nye området det opprinnelige området med 79 kvm. Hvordan finner du dimensjonene til det gitte rektangelet?
13 cm og 17 cm x og x + 4 er de opprinnelige målene. x + 2 og x + 7 er de nye dimensjonene x (x + 4) + 79 = (x + 2) (x + 7) x ^ 2 + 4x + 79 = x ^ 2 + 7x + 2x + 14 x ^ 2 + 4x + 79 = x ^ 2 + 9x + 14 4x + 79 = 9x + 14 79 = 5x + 14 65 = 5x x = 13
Lengden på et rektangel er 2 centimeter mindre enn to ganger bredden. Hvis området er 84 kvadratmeter, hvordan finner du dimensjonene av rektangelet?
Bredde = 7 cm lengde = 12 cm Det er ofte nyttig å tegne en rask skisse. La lengden være L La bredden være w Område = wL = w (2w-2) = 2w ^ 2-2w "" = "" 84 cm ^ 2 ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ color (blue) ("Bestem" w) Trekk 84 fra begge sider 0 = 2w ^ 2-2w-84 "" larr "Dette er en kvadratisk" Jeg tar en titt på dette og tenker: "Kan ikke se hvordan man faktoriserer, så bruk formelen." Sammenlign med y = ax ^ 2 + bx + c "" hvor "" x = (- b + -sqrt (b ^ 2-4ac)) / (2a) Så for vår ligning har vi: a = 2
Bredden og lengden på et rektangel er påfølgende like heltall. Hvis bredden er redusert med 3 tommer. da er området av det resulterende rektangel 24 kvadrattommer. Hva er området for det opprinnelige rektangel?
48 "square inches" "la bredden" = n "deretter lengden" = n + 2 n "og" n + 2color (blå) "er påfølgende like heltall" "bredden reduseres med" 3 "tommer" rArr "bredde "n-3" -området "=" lengde "xx" bredde "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = Olarrcolor "i standard form" "faktorene til - 30 hvilken sum til - 1 er + 5 og - 6" rArr (n-6) (n + 5) = 0 "ekvate hver faktor til null og løse for n" n-6 = 0rArrn = 6 n + 5 = 0rArrn = -5 n> 0rArrn =