Svar:
Forklaring:
For både sin kt og cos kt er perioden
Her er de separate perioder av vilkårene
Siden 48 er et heltall multipel av 4, er LCM 48 og dette er perioden for summen som gir sammensatt oscillasjon av de to separate svingninger
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er litt forvirret hvis jeg gjør Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), det blir negativt som cos (180 ° -teta) = - costheta in den andre kvadranten. Hvordan går jeg med å bevise spørsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hva er perioden og grunnperioden for y (x) = sin (2x) + cos (4x)?
Y (x) er en sum av to trignometriske funksjoner. Sinusperioden 2x ville være (2pi) / 2 som er pi eller 180 grader. Perioden for cos4x ville være (2pi) / 4 som er pi / 2 eller 90 grader. Finn LCM på 180 og 90. Det ville være 180. Dermed vil perioden for den oppgitte funksjonen være pi
Hvordan verifiserer du [sin ^ 3 (B) + cos ^ 3 (B)] / [sin (B) + cos (B)] = 1-sin (B) cos (B)?
Bevis under utvidelse av ^ 3 + b ^ 3 = (a + b) (a ^ 2-ab + b ^ 2), og vi kan bruke dette: (sin ^ 3B + cos ^ 3B) / (sinB + cosB) = sinBcosB + cos ^ 2B = sin ^ 2B + cos ^ 2B-sinBcosB (identitet: sin ^^ sinBcosB + cos ^ 2B)) / (sinB + cosB) = sin ^ 2B-sinBcosB + 2x + cos ^ 2x = 1) = 1-sinBcosB