To masser er i kontakt på en horisontal friksjonsfri overflate. En horisontal kraft påføres M_1 og en annen horisontal kraft påføres M_2 i motsatt retning. Hva er størrelsen på kontaktstyrken mellom massene?
13.8 N Se de gratis kroppsdiagrammer laget, fra det vi kan skrive, 14.3 - R = 3a ....... 1 (hvor, R er kontaktkraft og a er akselerasjon av systemet) og R-12.2 = 10.a .... 2 løse vi får, R = kontaktkraft = 13,8 N
Linje n passerer gjennom punkter (6,5) og (0, 1). Hva er y-avsnittet av linje k, hvis linje k er vinkelrett på linje n og går gjennom punktet (2,4)?
7 er y-avskjæringen av linjen k Først, la oss finne skråningen for linje n. (1-5) / (0-6) (-4) / - 6 2/3 = m Hellingen av linje n er 2/3. Det betyr at helling av linje k, som er vinkelrett på linje n, er den negative gjensidige av 2/3 eller -3/2. Så ligningen vi har så langt er: y = (- 3/2) x + b For å beregne b eller y-avskjermet, bare plugg inn (2,4) i ligningen. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Så y-avskjæringen er 7
Bevis at gitt en linje og peker ikke på den linjen, er det akkurat en linje som går gjennom det punktet vinkelrett gjennom den linjen? Du kan gjøre dette matematisk eller gjennom bygging (de gamle grekerne gjorde)?
Se nedenfor. La oss anta at den gitte linjen er AB, og poenget er P, som ikke er på AB. Nå, la oss anta at vi har tegnet en vinkelret PO på AB. Vi må bevise at denne PO er den eneste linjen som går gjennom P som er vinkelrett på AB. Nå skal vi bruke en konstruksjon. La oss konstruere en annen vinkelrett PC på AB fra punkt P. Nå beviset. Vi har, OP vinkelrett AB [Jeg kan ikke bruke vinkelrett tegn, hvordan annyoing] Og, også PC vinkelrett AB. Så, OP || PC. [Begge er perpendiculars på samme linje.] Nå har både OP og PC punkt P felles og de er parallelle. D