Svar:
y = 5
Forklaring:
En horisontal linje er parallell med x-aksen og har en skråning = 0.
Linjen går gjennom alle punktene i flyet med samme y-koordinat.
Det er likningen er
#color (rød) (y = c) # , hvor c er verdien av y-koordinatene som linjen passerer gjennom. I dette tilfellet går linjen gjennom 2 poeng, begge med en y-koordinat på 5.
# rArry = 5 "er ligningen til linjen" # graf {(y-0.001x-5) = 0 -20, 20, -10, 10}
Hva er ligningen av linjen som inneholder (4, -2) og parallelt med linjen som inneholder (-1.4) og (2 3)?
Y = 1 / 3x-2/3 • farge (hvit) (x) "parallelle linjer har like bakker" "beregne hellingen (m) på linjen som går gjennom" (-1,4) "og" ) "farge (rød)" bar (ul (| farge (hvit) (2/2) farge (svart) (m = (y_2-y_1) / (x_2-x_1) ) (x2, y_2) = (2,3) rArrm = (3-4)) / (2 - (- 1)) = (- 1) / 3-1 / 3 "uttrykker ligningen i" farge (blå) "punktskråningsform" • farge (hvit) (x) y-y_1 = m x-x_ 1) "med" m = -1/3 "og" (x_1, y_1) = (4, -2) y - (- 2) = - 1/3 (x-4) rArry + 2 = - 1/3 (x-4) "distribusjon og forenkling gir" y + 2 = -1 /
Hva er ligningen av linjen som er vinkelrett på linjen som går gjennom (5,3) og (8,8) midtpunktet på de to punktene?
Linjens likning er 5 * y + 3 * x = 47 Koordinatene til midtpunktet er [(8 + 5) / 2, (8 + 3) / 2] eller (13 / 2,11 / 2); Hellingen m1 av linjen som går gjennom (5,3) og (8,8) er (8-3) / (8-5) eller5 / 3; Vi vet at kondisjonen av vinkelretthet av to linjer er som m1 * m2 = -1 hvor m1 og m2 er bakkene til de vinkelrette linjene. Så linjens helling blir (-1 / (5/3)) eller -3/5 Nå er ligningens linje som går gjennom midtpunktet (13 / 2,11 / 2) y-11/2 = -3/5 (x-13/2) eller y = -3 / 5 * x + 39/10 + 11/2 eller y + 3/5 * x = 47/5 eller 5 * y + 3 * x = 47 [Svar]
Hva er ligningen av linjen som er vinkelrett på linjen som går gjennom (-8,10) og (-5,12) midtpunktet på de to punktene?
Se en løsningsprosess under: Først må vi finne midtpunktet for de to punktene i problemet. Formelen for å finne midtpunktet til et linjesegment gi de to sluttpunktene: M = ((farge (rød) (x_1) + farge (blå) (x_2)) / 2, (farge (rød) (y_1) + farge (blå) (y_2)) / 2) M er midtpunktet og de oppgitte punktene er: (farge (rød) (x_1), farge (rød) (y_1)) og (farge (blå) (x_2) farge (blå) (- 5)) / 2, (farge (rød) (10) + farge (blå) (farge (rød) 12)) / 2) M = (-13/2, 22/2) M = (-6,5, 11) Deretter må vi finne bakken på linjen som inneholder de to punkt